diff options
| author | Gregor Kleen <gkleen@yggdrasil.li> | 2016-04-22 23:52:05 +0200 |
|---|---|---|
| committer | Gregor Kleen <gkleen@yggdrasil.li> | 2016-04-22 23:52:05 +0200 |
| commit | 580b55955fc972c928b244f3086c7d4094b4693f (patch) | |
| tree | ad7bebd42337ee109dddf34d80118d66bf691e30 /ss2016 | |
| parent | c188e082751a279577ce84702744618387721225 (diff) | |
| download | uni-580b55955fc972c928b244f3086c7d4094b4693f.tar uni-580b55955fc972c928b244f3086c7d4094b4693f.tar.gz uni-580b55955fc972c928b244f3086c7d4094b4693f.tar.bz2 uni-580b55955fc972c928b244f3086c7d4094b4693f.tar.xz uni-580b55955fc972c928b244f3086c7d4094b4693f.zip | |
carch 01
Diffstat (limited to 'ss2016')
| -rw-r--r-- | ss2016/carch/01/abgabe.md | 30 |
1 files changed, 30 insertions, 0 deletions
diff --git a/ss2016/carch/01/abgabe.md b/ss2016/carch/01/abgabe.md new file mode 100644 index 0000000..6dd24be --- /dev/null +++ b/ss2016/carch/01/abgabe.md | |||
| @@ -0,0 +1,30 @@ | |||
| 1 | 4) a) $$(1200 \text{dpi})^2 = 1200^2 \ \left ( \frac{\text{inches}}{\text{m}} \right )^2 \cdot \text{dpi}^2 = 2.23 \times 10^9 \ \frac{\text{dots}}{\text{m}^2}$$ | ||
| 2 | Eine DIN A4-Seite hat $2^{-4} \text{m}^2$ Fläche. | ||
| 3 | \begin{align} | ||
| 4 | s = 2^{-4} \cdot 2.23 \times 10^9 \ \text{dots} = 1.40 \times 10^8 \ \text{dots} \label{eqn:s} | ||
| 5 | \end{align} | ||
| 6 | Wir benötigen $3 \cdot 8 \ \text{bit} = 24 \ \text{bit}$ pro dot. | ||
| 7 | $$p = 24 \frac{\text{bits}}{\text{dot}} \cdot 1.40 \times 10^8 \text{dots} = 3.35 \times 10^9 \ \text{bits}$$ | ||
| 8 | |||
| 9 | i) $$p \cdot \left ( 600 \ \frac{\text{MiBit}}{\text{s}} \right )^{-1} = p \cdot \left ( 600 \times 2^{20} \ \frac{\text{bits}}{\text{s}} \right )^{-1} = 5.32 \ \text{s}$$ | ||
| 10 | |||
| 11 | ii) $$p \cdot \left ( 1 \ \frac{\text{GiBit}}{\text{s}} \right )^{-1} = p \cdot \left ( 2^{30} \ \frac{\text{bits}}{\text{s}} \right )^{-1} = 3.12 \ \text{s}$$ | ||
| 12 | |||
| 13 | b) i) Die Koordinaten können $s$ (aus Gleichung \ref{eqn:s}) viele Ausprägungen annehmen. | ||
| 14 | Im optimalen Fall benötigen wir also $\lceil \log_2(s) \rceil = 28$ bits. | ||
| 15 | |||
| 16 | ii) Wir benötigen $16 + 28 = 44$ bits pro Zeichen. | ||
| 17 | Eine Seite enthält $45 \cdot 60 = 2700$ Zeichen. | ||
| 18 | |||
| 19 | Wir benötigen also $p^\prime = 2700 \cdot 44 \ \text{bits} = 118800 \ \text{bits} = 116.02 \ \text{KiBits}$ pro Seite. | ||
| 20 | |||
| 21 | \begin{align*} | ||
| 22 | p^\prime \cdot \left ( 600 \times 2^{20} \ \frac{\text{bits}}{\text{s}} \right ) &= 1.89 \times 10^{-4} \ \text{s} \\ | ||
| 23 | p^\prime \cdot \left ( 2^{30} \ \frac{\text{bits}}{\text{s}} \right ) &= 1.11 \times 10^{-4} \ \text{s} | ||
| 24 | \end{align*} | ||
| 25 | |||
| 26 | 5) a) 8 | ||
| 27 | b) \texttt{1011} | ||
| 28 | c) Hauptspeicher | ||
| 29 | d) Complex Instruction Set Computer | ||
| 30 | e) Drucker | ||
