diff options
| -rw-r--r-- | provider/posts/simmons-intro-to-cat-t/1.2.md | 14 |
1 files changed, 12 insertions, 2 deletions
diff --git a/provider/posts/simmons-intro-to-cat-t/1.2.md b/provider/posts/simmons-intro-to-cat-t/1.2.md index 3e83b5f..b91cac4 100644 --- a/provider/posts/simmons-intro-to-cat-t/1.2.md +++ b/provider/posts/simmons-intro-to-cat-t/1.2.md | |||
| @@ -106,10 +106,20 @@ Topological spaces $(S, \mathcal{O}_S)$, where $S$ is a Set and $\mathcal{O}_S \ | |||
| 106 | </div> | 106 | </div> |
| 107 | 107 | ||
| 108 | <div class="exercise"> | 108 | <div class="exercise"> |
| 109 | Let $A$ be an object of a category $\ca{C}$. | 109 | Show that $\End{\ca{C}}{A}$ is a monoid under composition, where $A$ is an object of a category $\ca{C}$. |
| 110 | Show that $\hom{\ca{C}}{A}{A}$ is a monoid under composition. | ||
| 111 | 110 | ||
| 112 | <div class="proof"> | 111 | <div class="proof"> |
| 112 | $\circ$ is associative and total on $\End{\ca{C}}{A}$ by the definition of category and $\End{\ca{C}}{A}$ is obviously closed under $\circ$. | ||
| 113 | 113 | ||
| 114 | $\idarr{A}$ is required to exist by the definition of category and indeed an identity of $\circ$ on $\End{\ca{C}}{A}$. | ||
| 115 | </div> | ||
| 116 | |||
| 117 | <div class="corollary"> | ||
| 118 | Each monoid $(M, \cdot)$ is a category ([again](./1.1.md)). | ||
| 119 | |||
| 120 | <div class="proof"> | ||
| 121 | We construct a category with exactly one object $\ast$ and associate to every element $m \in M$ an arrow $\arr{\ast}{m}{\ast}$. | ||
| 122 | We further define $m \circ m = m \ast m$. | ||
| 123 | </div> | ||
| 114 | </div> | 124 | </div> |
| 115 | </div> | 125 | </div> |
