diff options
| author | Gregor Kleen <gkleen@yggdrasil.li> | 2016-01-29 18:49:11 +0100 |
|---|---|---|
| committer | Gregor Kleen <gkleen@yggdrasil.li> | 2016-01-29 18:49:11 +0100 |
| commit | 60b2206e179317f9576fc9e89031ba9fd3892ec6 (patch) | |
| tree | 7528207d3875c9a125c7f10560a12aacd02e83fa /provider | |
| parent | fb55acfc7ce4bf2eebeff72e86fe7cedac7c55b1 (diff) | |
| download | dirty-haskell.org-60b2206e179317f9576fc9e89031ba9fd3892ec6.tar dirty-haskell.org-60b2206e179317f9576fc9e89031ba9fd3892ec6.tar.gz dirty-haskell.org-60b2206e179317f9576fc9e89031ba9fd3892ec6.tar.bz2 dirty-haskell.org-60b2206e179317f9576fc9e89031ba9fd3892ec6.tar.xz dirty-haskell.org-60b2206e179317f9576fc9e89031ba9fd3892ec6.zip | |
Simmons 1.1
Diffstat (limited to 'provider')
| -rw-r--r-- | provider/posts/simmons-intro-to-cat-t/1.1.md | 38 |
1 files changed, 38 insertions, 0 deletions
diff --git a/provider/posts/simmons-intro-to-cat-t/1.1.md b/provider/posts/simmons-intro-to-cat-t/1.1.md new file mode 100644 index 0000000..41aef99 --- /dev/null +++ b/provider/posts/simmons-intro-to-cat-t/1.1.md | |||
| @@ -0,0 +1,38 @@ | |||
| 1 | --- | ||
| 2 | title: Exercises in Category Theory — 1.1 | ||
| 3 | published: 2016-01-29 | ||
| 4 | tags: Category Theory | ||
| 5 | --- | ||
| 6 | |||
| 7 | <div class="corollary"> | ||
| 8 | Sets and functions do form a category $\ca{Set}$. | ||
| 9 | |||
| 10 | <div class="proof"> | ||
| 11 | The objects of $\ca{Set}$ are sets and its arrows are functions. | ||
| 12 | |||
| 13 | For any set $A$ we construct $id_A$ by restricting $id$ to $A$: | ||
| 14 | $$id_A = id \upharpoonright A$$ | ||
| 15 | |||
| 16 | $\circ$ is indeed associative. | ||
| 17 | </div> | ||
| 18 | </div> | ||
| 19 | |||
| 20 | <div class="corollary"> | ||
| 21 | Each [poset](https://en.wikipedia.org/wiki/Partially_ordered_set) is a category. | ||
| 22 | |||
| 23 | <div class="proof"> | ||
| 24 | The objects of each poset are its elements and we construct an arrow $\leq: a \to b$ for every pair of objects $(a, b)$ iff $a \leq b$. | ||
| 25 | |||
| 26 | Reflexivity ($a \leq a$) and transitivity ($a \leq b \land b \leq c \implies a \leq c$) provide a construction for $id_a$ and $\circ$, respectively. | ||
| 27 | </div> | ||
| 28 | </div> | ||
| 29 | |||
| 30 | <div class="corollary"> | ||
| 31 | Each [monoid](https://en.wikipedia.org/wiki/Monoid) is a category. | ||
| 32 | |||
| 33 | <div class="proof"> | ||
| 34 | The objects of each monoid are its elements and we construct for every pair of elements $(a, b)$ an arrow $\cdot b : a \to a \cdot b$. | ||
| 35 | |||
| 36 | The existence of an identity element and associativity, as required by the monoid structure, immediately provide us with a construction for $id$ and associativity of $\circ$. | ||
| 37 | </div> | ||
| 38 | </div> | ||
