summaryrefslogtreecommitdiff
path: root/provider/posts/simmons-intro-to-cat-t
diff options
context:
space:
mode:
authorGregor Kleen <gkleen@yggdrasil.li>2016-02-03 13:49:04 +0100
committerGregor Kleen <gkleen@yggdrasil.li>2016-02-03 13:49:04 +0100
commit35bbb98cbaa940a1266749a5f65a7a2451c44ee7 (patch)
treee76a15edd73c1cbdd145c18c22f43392f6285084 /provider/posts/simmons-intro-to-cat-t
parent7ff393170b2e542540ee5c0e044839e4df449947 (diff)
downloaddirty-haskell.org-35bbb98cbaa940a1266749a5f65a7a2451c44ee7.tar
dirty-haskell.org-35bbb98cbaa940a1266749a5f65a7a2451c44ee7.tar.gz
dirty-haskell.org-35bbb98cbaa940a1266749a5f65a7a2451c44ee7.tar.bz2
dirty-haskell.org-35bbb98cbaa940a1266749a5f65a7a2451c44ee7.tar.xz
dirty-haskell.org-35bbb98cbaa940a1266749a5f65a7a2451c44ee7.zip
CatT 1.2.2
Diffstat (limited to 'provider/posts/simmons-intro-to-cat-t')
-rw-r--r--provider/posts/simmons-intro-to-cat-t/1.2.md19
1 files changed, 19 insertions, 0 deletions
diff --git a/provider/posts/simmons-intro-to-cat-t/1.2.md b/provider/posts/simmons-intro-to-cat-t/1.2.md
index eef7a0a..7759368 100644
--- a/provider/posts/simmons-intro-to-cat-t/1.2.md
+++ b/provider/posts/simmons-intro-to-cat-t/1.2.md
@@ -49,3 +49,22 @@ Let $\ca{Pno}$ be the category of objects $(A, \alpha, a)$ where $A$ is a set, $
49 The morphism maps $\N$ to the transitive closure of $a$ under $\alpha$. 49 The morphism maps $\N$ to the transitive closure of $a$ under $\alpha$.
50 </div> 50 </div>
51</div> 51</div>
52
53<div class="exercise">
54Consider objects of form $(A, a)$ where $A$ is a set and $a \subseteq A$.
55For two such objects a morphism $\arr{(A, a)}{f}{(B, b)}$ is a function $f : A \to B$ that respects the selected subsets:
56$$\forall \alpha \in a \ldotp f(\alpha) \in b$$
57
58Show that such objects and morphisms form a category $\ca{SetD}$
59
60 1. For every $(A, a) \in \ca{SetD}$ there exists $\idarr{(A, a)}$
61 <div class="proof">
62 $\id$ on $A$ is indeed a function which respects the distinguished subset ($\forall \alpha \in a \ldotp \id(\alpha) \in a$) and thus a morphism
63 </div>
64
65 2. There exists a partial binary operation $\circ$ on the arrows of $\ca{SetD}$
66 <div class="proof">
67 Given three objects $(A, a), (B, b), (C, c)$ and two functions $g: A \to B$ and $f: B \to C$ the function $f \circ g: A \to C$ is an arrow in $\ca{SetD}$, that is to say, $\forall \alpha \in a$:
68 $$(f \circ g)(\alpha) = f(b) = c$$
69 </div>
70</div>