diff options
| author | Gregor Kleen <gkleen@yggdrasil.li> | 2016-02-03 21:33:51 +0100 |
|---|---|---|
| committer | Gregor Kleen <gkleen@yggdrasil.li> | 2016-02-03 21:33:51 +0100 |
| commit | 5553a3223d07f73955465952d7765d47d3558d7b (patch) | |
| tree | 53c3ae50c85cdc7c45ae12817a9728de29ba0e47 | |
| parent | 7f1293b7afa7574d93c07fd34dc472bb0979a98f (diff) | |
| download | dirty-haskell.org-5553a3223d07f73955465952d7765d47d3558d7b.tar dirty-haskell.org-5553a3223d07f73955465952d7765d47d3558d7b.tar.gz dirty-haskell.org-5553a3223d07f73955465952d7765d47d3558d7b.tar.bz2 dirty-haskell.org-5553a3223d07f73955465952d7765d47d3558d7b.tar.xz dirty-haskell.org-5553a3223d07f73955465952d7765d47d3558d7b.zip | |
CatT 1.2.8
| -rw-r--r-- | provider/posts/simmons-intro-to-cat-t/1.2.md | 18 |
1 files changed, 18 insertions, 0 deletions
diff --git a/provider/posts/simmons-intro-to-cat-t/1.2.md b/provider/posts/simmons-intro-to-cat-t/1.2.md index faaf429..30d0492 100644 --- a/provider/posts/simmons-intro-to-cat-t/1.2.md +++ b/provider/posts/simmons-intro-to-cat-t/1.2.md | |||
| @@ -181,3 +181,21 @@ where $\rest{f}{\bar{A}}$ is total. | |||
| 181 | </div> | 181 | </div> |
| 182 | </div> | 182 | </div> |
| 183 | 183 | ||
| 184 | <div class="exercise"> | ||
| 185 | Verify that for every monoid $R$ both $R\ca{Set}$ and $\ca{Set}R$ are categories of structured sets. | ||
| 186 | |||
| 187 | <div class="proof"> | ||
| 188 | Since the two proofs are perfectly analogous we cover only the case $R\ca{Set}$. | ||
| 189 | |||
| 190 | 1. For every $R$-Set $A \in R\ca{Set}$ there exists $\idarr{A}$ | ||
| 191 | |||
| 192 | $\id$ on $A$ is indeed a structure preserving function ($\forall a \in A, r \in R \ldotp \id(ra) = ra = r \id(a)$). | ||
| 193 | |||
| 194 | 2. There exists an associative partial binary operation $\circ$ on the arrows of $R\ca{Set}$ | ||
| 195 | |||
| 196 | Given three R-Sets $A$, $B$, and $C$ and two continuous maps $g : A \to B$ and $f : B \to C$ the map $f \circ g : A \to C$ is an arrow in $R\ca{Set}$, that is to say $\forall a \in A, r \in R$: | ||
| 197 | $$(f \circ g)(ra) = f(r g(a)) = r (f \circ g)(a)$$ | ||
| 198 | |||
| 199 | The format of the proof was chosen to demonstrate that $R\ca{Set}$ is indeed a structured set. | ||
| 200 | </div> | ||
| 201 | </div> | ||
