1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
\begin{code}
{-# LANGUAGE ScopedTypeVariables
#-}
{-|
Description: Finite state transducers with epsilon-transitions
-}
module Control.FST
( FST(..)
-- * Constructing FSTs
, wordFST
-- * Operations on FSTs
, productFST, invertFST, restrictFST
-- * Debugging Utilities
, liveFST
) where
import Data.Map.Strict (Map, (!?))
import qualified Data.Map.Strict as Map
import Data.Set (Set)
import qualified Data.Set as Set
import Data.Sequence (Seq)
import qualified Data.Sequence as Seq
import Data.Maybe (mapMaybe, fromMaybe)
import Numeric.Natural
import Control.Lens.TH
import Control.Monad.State.Strict
import Text.PrettyPrint.Leijen (Pretty(..))
import qualified Text.PrettyPrint.Leijen as PP
import Debug.Trace
data FST state input output = FST
{ stInitial :: Set state
, stTransition :: Map (state, Maybe input) (Set (state, Maybe output))
, stAccept :: Set state
} deriving (Show, Read)
instance (Show state, Show input, Show output) => Pretty (FST state input output) where
pretty FST{..} = PP.vsep
[ PP.text "Initial states:" PP.</> PP.hang 2 (PP.list . map (PP.text . show) $ Set.toAscList stInitial)
, PP.text "State transitions:" PP.<$> PP.indent 2 (PP.vsep
[ PP.text (show st)
PP.<+> (PP.text "-" PP.<> PP.tupled [label inS, label outS] PP.<> PP.text "→")
PP.<+> PP.text (show st')
| ((st, inS), to) <- Map.toList stTransition
, (st', outS) <- Set.toAscList to
])
, PP.text "Accepting states:" PP.</> PP.hang 2 (PP.list . map (PP.text . show) $ Set.toAscList stAccept)
]
where
label :: Show a => Maybe a -> PP.Doc
label = maybe (PP.text "ɛ") (PP.text . show)
wordFST :: forall input output. Seq output -> FST Natural input output
-- ^ @wordFST str@ is the minimal FST generating @str@ as output when given no input
wordFST outs = FST
{ stInitial = Set.singleton 0
, stAccept = Set.singleton l
, stTransition = Map.fromSet next states
}
where
l :: Natural
l = fromIntegral $ Seq.length outs
states :: Set (Natural, Maybe input)
states = Set.fromDistinctAscList [ (n, Nothing) | n <- [0..pred l] ]
next :: (Natural, Maybe input) -> Set (Natural, Maybe output)
next (i, _) = Set.singleton (succ i, Just . Seq.index outs $ fromIntegral i)
productFST :: forall state1 state2 input output. (Ord state1, Ord state2, Ord input, Ord output) => FST state1 input output -> FST state2 input output -> FST (state1, state2) input output
-- ^ Cartesian product on states, logical conjunction on transitions and state-properties (initial and accept)
--
-- This is most intuitive when thought of as the component-wise product of weighted FSTs with weights in the boolean semiring.
productFST fst1 fst2 = FST
{ stInitial = stInitial fst1 `setProduct` stInitial fst2
, stAccept = stAccept fst1 `setProduct` stAccept fst2
, stTransition = Map.fromSet transitions . Set.fromList . mapMaybe filterTransition . Set.toAscList $ Map.keysSet (stTransition fst1) `setProduct` Map.keysSet (stTransition fst2)
}
where
setProduct :: forall a b. Set a -> Set b -> Set (a, b)
setProduct as bs = Set.fromDistinctAscList $ (,) <$> Set.toAscList as <*> Set.toAscList bs
filterTransition :: forall label. Eq label => ((state1, Maybe label), (state2, Maybe label)) -> Maybe ((state1, state2), Maybe label)
filterTransition ((st1, Nothing ), (st2, in2 )) = Just ((st1, st2), in2)
filterTransition ((st1, in1 ), (st2, Nothing )) = Just ((st1, st2), in1)
filterTransition ((st1, Just in1), (st2, Just in2))
| in1 == in2 = Just ((st1, st2), Just in1)
| otherwise = Nothing
transitions :: ((state1, state2), Maybe input) -> Set ((state1, state2), Maybe output)
transitions ((st1, st2), inS) = Set.fromList . mapMaybe filterTransition . Set.toAscList $ out1 `setProduct` out2
where
out1 = (fromMaybe Set.empty $ stTransition fst1 !? (st1, inS)) `Set.union` (fromMaybe Set.empty $ stTransition fst1 !? (st1, Nothing))
out2 = (fromMaybe Set.empty $ stTransition fst2 !? (st2, inS)) `Set.union` (fromMaybe Set.empty $ stTransition fst2 !? (st2, Nothing))
restrictFST :: forall state input output. (Ord state, Ord input, Ord output) => Set state -> FST state input output -> FST state input output
restrictFST sts FST{..} = FST
{ stInitial = stInitial `Set.intersection` sts
, stAccept = stAccept `Set.intersection` sts
, stTransition = Map.mapMaybeWithKey restrictTransition stTransition
}
where
restrictTransition :: (state, Maybe input) -> Set (state, Maybe output) -> Maybe (Set (state, Maybe output))
restrictTransition (st, _) tos = tos' <$ guard (st `Set.member` sts)
where
tos' = Set.filter (\(st', _) -> st' `Set.member` sts) tos
liveFST :: forall state input output. (Ord state, Ord input, Ord output, Show state) => FST state input output -> Set state
-- ^ Compute the set of "live" states (with no particular complexity)
--
-- A state is "live" iff there is a path from it to an accepting state and a path from an initial state to it
liveFST fst@FST{..} = flip execState Set.empty $ mapM_ (depthSearch Set.empty) stInitial
where
stTransition' :: Map state (Set state)
stTransition' = Map.map (Set.map $ \(st, _) -> st) $ Map.mapKeysWith Set.union (\(st, _) -> st) stTransition
depthSearch :: Set state -> state -> State (Set state) ()
depthSearch acc curr = do
let acc' = Set.insert curr acc
next = fromMaybe Set.empty $ stTransition' !? curr
alreadyLive <- get
when (not . Set.null $ Set.insert curr next `Set.intersection` Set.union stAccept alreadyLive) $
modify $ Set.union acc'
mapM_ (depthSearch acc') $ next `Set.difference` alreadyLive
invertFST :: FST state input output -> Seq output -> Set (Seq input)
invertFST = undefined
\end{code}
|