summaryrefslogtreecommitdiff
path: root/edit-lens/src
diff options
context:
space:
mode:
Diffstat (limited to 'edit-lens/src')
-rw-r--r--edit-lens/src/Control/DFST.lhs57
-rw-r--r--edit-lens/src/Control/DFST/Lens.lhs412
-rw-r--r--edit-lens/src/Control/Edit.lhs6
-rw-r--r--edit-lens/src/Control/FST.lhs270
-rw-r--r--edit-lens/src/Control/Lens/Edit.lhs10
5 files changed, 520 insertions, 235 deletions
diff --git a/edit-lens/src/Control/DFST.lhs b/edit-lens/src/Control/DFST.lhs
index eae2e66..6e16c74 100644
--- a/edit-lens/src/Control/DFST.lhs
+++ b/edit-lens/src/Control/DFST.lhs
@@ -1,6 +1,7 @@
1\begin{comment}
1\begin{code} 2\begin{code}
2{-# LANGUAGE ScopedTypeVariables 3{-# LANGUAGE ScopedTypeVariables
3#-} 4 #-}
4 5
5{-| 6{-|
6Description: Deterministic finite state transducers 7Description: Deterministic finite state transducers
@@ -11,8 +12,8 @@ module Control.DFST
11 , toFST 12 , toFST
12 ) where 13 ) where
13 14
14import Data.Map.Strict (Map, (!?)) 15import Data.Map.Lazy (Map, (!?))
15import qualified Data.Map.Strict as Map 16import qualified Data.Map.Lazy as Map
16 17
17import Data.Set (Set) 18import Data.Set (Set)
18import qualified Data.Set as Set 19import qualified Data.Set as Set
@@ -29,18 +30,34 @@ import Control.Monad.State
29 30
30import Control.FST (FST(FST)) 31import Control.FST (FST(FST))
31import qualified Control.FST as FST 32import qualified Control.FST as FST
33\end{code}
34\end{comment}
32 35
36\begin{defn}[deterministic finite state transducer]
37 Wir nennen einen FST \emph{deterministic}, wenn jedes Paar aus Ausgabezustand und Eingabesymbol maximal eine Transition zulässt, $\epsilon$-Transitionen keine Schleifen bilden und die Menge von initialen Zustände einelementig ist.
33 38
39 Zusätzlich ändern wir die Darstellung indem wir $\epsilon$-Transitionen kontrahieren.
40 Wir erweitern hierfür die Ausgabe pro Transition von einem einzelnen Zeichen zu einem Wort beliebiger Länge und fügen, bei jeder Kontraktion einer $\epsilon$-Transition $A \rightarrow B$, die Ausgabe der Transition vorne an die Ausgabe aller Transitionen $B \rightarrow \ast$ von $B$ an.
41\end{defn}
42
43\begin{code}
34data DFST state input output = DFST 44data DFST state input output = DFST
35 { stInitial :: state 45 { stInitial :: state
36 , stTransition :: Map (state, input) (state, Seq output) 46 , stTransition :: Map (state, input) (state, Seq output)
37 -- ^ All @(s, c)@-combinations not mapped are assumed to map to @(s, Nothing)@
38 , stAccept :: Set state 47 , stAccept :: Set state
39 } 48 }
49\end{code}
40 50
51Die in der Definition von DFSTs beschriebene Umwandlung lässt sich umkehren, sich also jeder DFST auch als FST auffassen.
41 52
53Hierfür trennen wir Transitionen $A \overset{(\sigma, \delta^\ast)}{\rightarrow} B$ mit Eingabe $\sigma$ und Ausgabe-Wort $\delta^\ast = \delta_1 \delta_2 \ldots \delta_n$ in eine Serie von Transitionen $A \overset{(\sigma, \delta_1)}{\rightarrow} A_1 \overset{(\epsilon, \delta_2)}{\rightarrow} \ldots \overset{(\epsilon, \delta_n)}{\rightarrow} B$ auf.
54
55\begin{code}
42toFST :: forall state input output. (Ord state, Ord input, Ord output) => DFST state input output -> FST (state, Maybe (input, Natural)) input output 56toFST :: forall state input output. (Ord state, Ord input, Ord output) => DFST state input output -> FST (state, Maybe (input, Natural)) input output
43-- ^ Split apart non-singleton outputs into a series of epsilon-transitions 57-- ^ View a DFST as a FST splitting apart non-singleton outputs into a series of epsilon-transitions
58\end{code}
59\begin{comment}
60\begin{code}
44toFST DFST{..} = flip execState initialFST $ forM_ (Map.toList stTransition) handleTransition 61toFST DFST{..} = flip execState initialFST $ forM_ (Map.toList stTransition) handleTransition
45 where 62 where
46 initialFST = FST 63 initialFST = FST
@@ -62,21 +79,31 @@ toFST DFST{..} = flip execState initialFST $ forM_ (Map.toList stTransition) han
62 -- Both calls to `handleTransition'` (one in `handleTransition`, the other below) satisfy one of the above cases 79 -- Both calls to `handleTransition'` (one in `handleTransition`, the other below) satisfy one of the above cases
63 addTransition (from, inS) (next, Just outS) 80 addTransition (from, inS) (next, Just outS)
64 handleTransition' next Nothing oo to 81 handleTransition' next Nothing oo to
65 82\end{code}
83\end{comment}
84
85Das Ausführen eines DFST auf eine gegebene Eingabe ist komplett analog zum Ausführen eines FST.
86Unsere Implementierung nutzt die restriktivere Struktur aus unserer Definition von DFSTs um den Determinismus bereits im Typsystem zu kodieren.
87
88\begin{code}
66runDFST :: forall state input output. (Ord state, Ord input) => DFST state input output -> Seq input -> Maybe (Seq output) 89runDFST :: forall state input output. (Ord state, Ord input) => DFST state input output -> Seq input -> Maybe (Seq output)
67runDFST dfst@DFST{..} str = let (finalState, str') = runDFST' dfst stInitial str Seq.empty 90\end{code}
68 in str' <$ guard (finalState `Set.member` stAccept) 91\begin{comment}
92\begin{code}
93runDFST dfst@DFST{..} str = do
94 let (str', finalState') = runDFST' dfst stInitial str Seq.empty
95 finalState <- finalState'
96 str' <$ guard (finalState `Set.member` stAccept)
69 97
70runDFST' :: forall state input output. (Ord state, Ord input) 98runDFST' :: forall state input output. (Ord state, Ord input)
71 => DFST state input output 99 => DFST state input output
72 -> state -- ^ Current state 100 -> state -- ^ Current state
73 -> Seq input -- ^ Remaining input 101 -> Seq input -- ^ Remaining input
74 -> Seq output -- ^ Accumulator containing previous output 102 -> Seq output -- ^ Accumulator containing previous output
75 -> (state, Seq output) -- ^ Next state, altered output 103 -> (Seq output, Maybe state) -- ^ Altered output, Next state
76runDFST' _ st Empty acc = (st, acc) 104runDFST' _ st Empty acc = (acc, Just st)
77runDFST' dfst@DFST{..} st (c :<| cs) acc 105runDFST' dfst@DFST{..} st (c :<| cs) acc = case stTransition !? (st, c) of
78 | Just (st', mc') <- stTransition !? (st, c) 106 Just (st', mc') -> runDFST' dfst st' cs $ acc <> mc'
79 = runDFST' dfst st' cs $ acc <> mc' 107 Nothing -> (acc, Nothing)
80 | otherwise
81 = runDFST' dfst st cs acc
82\end{code} 108\end{code}
109\end{comment}
diff --git a/edit-lens/src/Control/DFST/Lens.lhs b/edit-lens/src/Control/DFST/Lens.lhs
index 95be34e..fe33bd6 100644
--- a/edit-lens/src/Control/DFST/Lens.lhs
+++ b/edit-lens/src/Control/DFST/Lens.lhs
@@ -1,12 +1,14 @@
1\begin{comment}
1\begin{code} 2\begin{code}
2{-# LANGUAGE ScopedTypeVariables 3{-# LANGUAGE ScopedTypeVariables
3 , TemplateHaskell 4 , TemplateHaskell
4 , ConstraintKinds 5 , ConstraintKinds
6 , GeneralizedNewtypeDeriving
5#-} 7#-}
6 8
7module Control.DFST.Lens 9module Control.DFST.Lens
8 ( StringEdit(..) 10 ( StringEdit(..), sePos, seInsertion
9 , StringEdits(..) 11 , StringEdits(..), _StringEdits, _SEFail, stringEdits
10 , insert, delete, replace 12 , insert, delete, replace
11 , DFSTAction(..), DFSTComplement 13 , DFSTAction(..), DFSTComplement
12 , dfstLens 14 , dfstLens
@@ -16,7 +18,7 @@ module Control.DFST.Lens
16 18
17import Control.DFST 19import Control.DFST
18import Control.FST hiding (stInitial, stTransition, stAccept) 20import Control.FST hiding (stInitial, stTransition, stAccept)
19import qualified Control.FST as FST (stInitial, stTransition, stAccept) 21import qualified Control.FST as FST (stInitial, stTransition, stAccept, step)
20import Control.Lens.Edit 22import Control.Lens.Edit
21import Control.Lens 23import Control.Lens
22import Control.Lens.TH 24import Control.Lens.TH
@@ -32,11 +34,11 @@ import Data.Sequence (Seq((:<|), (:|>)))
32import qualified Data.Sequence as Seq 34import qualified Data.Sequence as Seq
33import Data.Set (Set) 35import Data.Set (Set)
34import qualified Data.Set as Set 36import qualified Data.Set as Set
35import Data.Map.Strict (Map) 37import Data.Map.Lazy (Map)
36import qualified Data.Map.Strict as Map 38import qualified Data.Map.Lazy as Map
37 39
38import Data.Compositions.Snoc (Compositions) 40import Data.Compositions (Compositions)
39import qualified Data.Compositions.Snoc as Comp 41import qualified Data.Compositions as Comp
40 42
41import Data.Algorithm.Diff (Diff, getDiff) 43import Data.Algorithm.Diff (Diff, getDiff)
42import qualified Data.Algorithm.Diff as Diff 44import qualified Data.Algorithm.Diff as Diff
@@ -48,69 +50,72 @@ import Data.Function (on)
48import Data.Foldable (toList) 50import Data.Foldable (toList)
49import Data.List (partition) 51import Data.List (partition)
50 52
51import Debug.Trace 53import Control.Exception (assert)
52 54
55import System.IO.Unsafe
56import Text.PrettyPrint.Leijen (Pretty(..))
53 57
54data StringEdit char = Insert { _sePos :: Natural, _seInsertion :: char } 58\end{code}
55 | Delete { _sePos :: Natural } 59\end{comment}
60
61
62Wir betrachten, zur Einfachheit, ein minimiales Set von Edits auf Strings\footnote{Wie in der Konstruktion zum Longest Common Subsequence Problem}:
63
64\begin{defn}[Atomare edits of strings]
65\begin{code}
66data StringEdit pos char = Insert { _sePos :: pos, _seInsertion :: char }
67 | Delete { _sePos :: pos }
56 deriving (Eq, Ord, Show, Read) 68 deriving (Eq, Ord, Show, Read)
57 69
70-- Automatically derive van-leerhoven-lenses:
71--
72-- @sePos :: Lens' (StringEdits pos char) pos@
73-- @seInsertion :: Traversal' (StringEdits pos char) char@
58makeLenses ''StringEdit 74makeLenses ''StringEdit
75\end{code}
76\end{defn}
59 77
60data StringEdits char = StringEdits (Seq (StringEdit char)) 78Atomare edits werden, als Liste, zu edits komponiert.
61 | SEFail 79Wir führen einen speziellen edit ein, der nicht-Anwendbarkeit der edits repräsentiert:
80\begin{code}
81data StringEdits pos char = StringEdits (Seq (StringEdit pos char))
82 | SEFail
62 deriving (Eq, Ord, Show, Read) 83 deriving (Eq, Ord, Show, Read)
63 84
64makePrisms ''StringEdits 85makePrisms ''StringEdits
65 86
66stringEdits :: Traversal' (StringEdits char) (StringEdit char) 87stringEdits :: Traversal (StringEdits pos char) (StringEdits pos' char') (StringEdit pos char) (StringEdit pos' char')
88\end{code}
89\begin{comment}
90\begin{code}
67stringEdits = _StringEdits . traverse 91stringEdits = _StringEdits . traverse
68 92\end{code}
69affected :: forall char. StringEdits char -> Maybe (Interval Natural) 93\end{comment}
70-- ^ For a given set of edits @es@ return the interval @i = a ... b@ such that for any given string @str@ of sufficient length the following holds: 94\begin{code}
71-- 95insert :: pos -> char -> StringEdits pos char
72-- - For all @n :: Natural@: @n < a ==> str ! n == (str `apply` es) ! n@ 96\end{code}
73-- - There exists a @k :: Integer@ such that for all @n :: Integer@: @n > b ==> str ! (n + k) == (str `apply` es) ! n@ 97\begin{comment}
74-- 98\begin{code}
75-- Intuitively: for any character @c@ of the new string @str `apply` es@ there exists a corresponding character in @str@ (offset by either 0 or a constant shift @k@) if the index of @c@ is /not/ contained in @affected es@.
76affected SEFail = Nothing
77affected (StringEdits es) = Just . toInterval $ go es Map.empty
78 where
79 toInterval :: Map Natural Integer -> Interval Natural
80 toInterval map
81 | Just (((minK, _), _), ((maxK, _), _)) <- (,) <$> Map.minViewWithKey map <*> Map.maxViewWithKey map
82 = let
83 maxV' = maximum . (0 :) $ do
84 offset <- [0..maxK]
85 v <- maybeToList $ Map.lookup (maxK - offset) map
86 v' <- maybeToList . fmap fromInteger $ negate v <$ guard (v <= 0)
87 guard $ v' >= succ offset
88 return $ v' - offset
89 in (minK Int.... maxK + maxV')
90 | otherwise
91 = Int.empty
92 go :: Seq (StringEdit char) -> Map Natural Integer -> Map Natural Integer
93 go Seq.Empty offsets = offsets
94 go (es :> e) offsets = go es offsets'
95 where
96 p = e ^. sePos
97 p' = fromIntegral $ Map.foldrWithKey (\k o p -> bool (fromIntegral p) (o + p) $ k < fromIntegral p) (fromIntegral p) offsets
98 offsets' = Map.alter (Just . myOffset . fromMaybe 0) p offsets
99 myOffset :: Integer -> Integer
100 myOffset
101 | Insert _ _ <- e = pred
102 | Delete _ <- e = succ
103
104insert :: Natural -> char -> StringEdits char
105insert n c = StringEdits . Seq.singleton $ Insert n c 99insert n c = StringEdits . Seq.singleton $ Insert n c
106 100\end{code}
107delete :: Natural -> StringEdits char 101\end{comment}
102\begin{code}
103delete :: pos -> StringEdits pos char
104\end{code}
105\begin{comment}
106\begin{code}
108delete n = StringEdits . Seq.singleton $ Delete n 107delete n = StringEdits . Seq.singleton $ Delete n
109 108\end{code}
110replace :: Natural -> char -> StringEdits char 109\end{comment}
110\begin{code}
111replace :: Eq pos => pos -> char -> StringEdits pos char
112\end{code}
113\begin{comment}
114\begin{code}
111replace n c = insert n c <> delete n 115replace n c = insert n c <> delete n
112 116
113instance Monoid (StringEdits char) where 117-- | Rudimentarily optimize edit composition
118instance Eq pos => Monoid (StringEdits pos char) where
114 mempty = StringEdits Seq.empty 119 mempty = StringEdits Seq.empty
115 SEFail `mappend` _ = SEFail 120 SEFail `mappend` _ = SEFail
116 _ `mappend` SEFail = SEFail 121 _ `mappend` SEFail = SEFail
@@ -122,12 +127,16 @@ instance Monoid (StringEdits char) where
122 , n == n' 127 , n == n'
123 = StringEdits bs `mappend` StringEdits as 128 = StringEdits bs `mappend` StringEdits as
124 | otherwise = StringEdits $ x `mappend` y 129 | otherwise = StringEdits $ x `mappend` y
130\end{code}
131\end{comment}
125 132
126instance Module (StringEdits char) where 133Da wir ein minimales set an atomaren edits gewählt haben, ist die Definiton der Modulnstruktur über Strings des passenden Alphabets recht einfach:
127 type Domain (StringEdits char) = Seq char 134\begin{code}
135instance Module (StringEdits Natural char) where
136 type Domain (StringEdits Natural char) = Seq char
128 apply str SEFail = Nothing 137 apply str SEFail = Nothing
129 apply str (StringEdits Seq.Empty) = Just str 138 apply str (StringEdits Seq.Empty) = Just str
130 apply str (StringEdits (es :|> Insert n c)) = (flip apply) (StringEdits es) =<< go str n c 139 apply str (StringEdits (es :|> Insert n c)) = flip apply (StringEdits es) =<< go str n c
131 where 140 where
132 go Seq.Empty n c 141 go Seq.Empty n c
133 | n == 0 = Just $ Seq.singleton c 142 | n == 0 = Just $ Seq.singleton c
@@ -135,7 +144,7 @@ instance Module (StringEdits char) where
135 go str@(x :<| xs) n c 144 go str@(x :<| xs) n c
136 | n == 0 = Just $ c <| str 145 | n == 0 = Just $ c <| str
137 | otherwise = (x <|) <$> go xs (pred n) c 146 | otherwise = (x <|) <$> go xs (pred n) c
138 apply str (StringEdits (es :|> Delete n)) = (flip apply) (StringEdits es) =<< go str n 147 apply str (StringEdits (es :|> Delete n)) = flip apply (StringEdits es) =<< go str n
139 where 148 where
140 go Seq.Empty _ = Nothing 149 go Seq.Empty _ = Nothing
141 go (x :<| xs) n 150 go (x :<| xs) n
@@ -146,99 +155,128 @@ instance Module (StringEdits char) where
146 divInit = StringEdits . Seq.unfoldl go . (0,) 155 divInit = StringEdits . Seq.unfoldl go . (0,)
147 where 156 where
148 go (_, Seq.Empty) = Nothing 157 go (_, Seq.Empty) = Nothing
149 go (n, (c :<| cs)) = Just ((succ n, cs), Insert n c) 158 go (n, c :<| cs ) = Just ((succ n, cs), Insert n c)
150 159
151\end{code} 160\end{code}
152 161
153% TODO Make notation mathy 162% TODO Make notation mathy
154 163
155Um zunächst eine asymmetrische edit-lens `StringEdits -> StringEdits` mit akzeptabler Komplexität für einen bestimmten `DFST s` (entlang der \emph{Richtung} des DFSTs) zu konstruieren möchten wir folgendes Verfahren anwenden: 164Um zunächst eine asymmetrische edit-lens \texttt{StringEdits -> StringEdits} mit akzeptabler Komplexität für einen bestimmten DFST (entlang der \emph{Richtung} des DFSTs) zu konstruieren möchten wir folgendes Verfahren anwenden:
156 165
157Gegeben eine Sequenz (`StringEdits`) von zu übersetzenden Änderungen genügt es die Übersetzung eines einzelnen `StringEdit`s in eine womöglich längere Sequenz von `StringEdits` anzugeben, alle `StringEdits` aus der Sequenz zu übersetzen (hierbei muss auf die korrekte Handhabung des Komplements geachtet werden) und jene Übersetzungen dann zu concatenieren. 166Gegeben eine Sequenz von zu übersetzenden Änderungen genügt es die Übersetzung eines einzelnen \texttt{StringEdit}s in eine womöglich längere Sequenz von \texttt{StringEdits} anzugeben, alle \texttt{StringEdits} aus der Sequenz derart zu übersetzen (hierbei muss auf die korrekte Handhabung des Komplements geachtet werden) und jene Übersetzungen dann zu concatenieren.
158 167
159Wir definieren zunächst die \emph{Wirkung} eines DFST auf einen festen String als eine Abbildung `state -> (state, String)`, die den aktuellen Zustand vorm Parsen des Strings auf den Zustand danach und die (womöglich leere) Ausgabe schickt. 168Wir definieren zunächst die \emph{Wirkung} eines DFST auf einen festen String als eine Abbildung \texttt{state -> (Seq output, Maybe state)}, die den aktuellen Zustand vor dem Parsen des Strings auf den Zustand danach und die (womöglich leere) Ausgabe schickt.
169Wir annotieren Wirkungen zudem mit dem konsumierten String.
160Diese Wirkungen bilden einen Monoiden analog zu Endomorphismen, wobei die Resultat-Strings concateniert werden. 170Diese Wirkungen bilden einen Monoiden analog zu Endomorphismen, wobei die Resultat-Strings concateniert werden.
161 171
162Die Unterliegende Idee ist nun im Komplement der edit-lens eine Liste von Wirkungen (eine für jedes Zeichen der Eingabe des DFSTs) und einen Cache der monoidalen Summen aller kontinuirlichen Teillisten zu halten.
163Da wir wissen welche Stelle im input-String von einem gegebenen edit betroffen ist können wir, anhand der Wirkung des Teilstücks bis zu jener Stelle, den output-String in einen durch den edit unveränderten Prefix und einen womöglich betroffenen Suffix unterteilen.
164Die Wirkung ab der betroffenen Stelle im input-String können wir also Komposition der Wirkung der durch den edit betroffenen Stelle und derer aller Zeichen danach bestimmen.
165Nun gilt es nur noch die Differenz (als `StringEdits`) des vorherigen Suffixes im output-String und des aus der gerade berechneten Wirkung Bestimmten zu bestimmen.
166
167
168% Für die Rückrichtung bietet es sich an eine Art primitive Invertierung des DFSTs zu berechnen.
169% Gegeben den aktuellen DFST $A$ möchten wir einen anderen $A^{-1}$ finden, sodass gilt:
170
171% \begin{itemize}
172% \item $A^{-1}$ akzeptiert einen String $s^{-1}$ (endet seinen Lauf in einem finalen Zustand) gdw. es einen String $s$ gibt, der unter $A$ die Ausgabe $s^{-1}$ produziert.
173% \item Wenn $A^{-1}$ einen String $s^{-1}$ akzeptiert so produziert die resultierende Ausgabe $s$ unter $A$ die Ausgabe $s^{-1}$.
174% \end{itemize}
175
176% Kann nicht funktionieren, denn $A^{-1}$ ist notwendigerweise nondeterministisch. Wird $A^{-1}$ dann zu einem DFST forciert (durch arbiträre Wahl einer Transition pro Zustand) gehen Informationen verloren—$A^{-1}$ produziert nicht den minimale edit auf dem input string (in der Tat beliebig schlecht) für einen gegeben edit auf dem output string.
177
178% Stelle im bisherigen Lauf isolieren, an der edit im output-string passieren soll, breitensuche auf pfaden, die sich von dieser stelle aus unterscheiden?
179% Gegeben einen Pfad und eine markierte Transition, finde Liste aller Pfade aufsteigend sortiert nach Unterschied zu gegebenem Pfad, mit Unterschieden "nahe" der markierten Transition zuerst — zudem jeweils edit auf dem Eingabestring
180% Einfacher ist Breitensuche ab `stInitial` und zunächst diff auf eingabe-strings.
181
182\begin{code} 172\begin{code}
183
184data DFSTAction state input output = DFSTAction 173data DFSTAction state input output = DFSTAction
185 { runDFSTAction :: state -> (state, Seq output) 174 { runDFSTAction :: state -> (Seq output, Maybe state)
186 , dfstaConsumes :: Seq input 175 , dfstaConsumes :: Seq input
187 } 176 }
188 177
189instance Monoid (DFSTAction state input output) where 178instance Monoid (DFSTAction state input output) where
190 mempty = DFSTAction (\x -> (x, Seq.empty)) Seq.empty 179\end{code}
180\begin{comment}
181\begin{code}
182 mempty = DFSTAction (\x -> (Seq.empty, Just x)) Seq.empty
191 DFSTAction f cf `mappend` DFSTAction g cg = DFSTAction 183 DFSTAction f cf `mappend` DFSTAction g cg = DFSTAction
192 { runDFSTAction = \s -> let ((f -> (s', out')), out) = g s in (s', out <> out') 184 { runDFSTAction = \x ->
185 let (outG, x') = g x
186 (outF, x'') = maybe (mempty, Nothing) f x'
187 in (outG <> outF, x'')
193 , dfstaConsumes = cg <> cf 188 , dfstaConsumes = cg <> cf
194 } 189 }
190\end{code}
191\end{comment}
192\begin{code}
195 193
196type DFSTComplement state input output = Compositions (DFSTAction state input output) 194type DFSTComplement state input output = Compositions (DFSTAction state input output)
197 195
198runDFSTAction' :: DFSTComplement state input output -> state -> (state, Seq output) 196runDFSTAction' :: DFSTComplement state input output -> state -> (Seq output, Maybe state)
199runDFSTAction' = runDFSTAction . Comp.composed 197runDFSTAction' = runDFSTAction . Comp.composed
200 198
201dfstaConsumes' :: DFSTComplement state input output -> Seq input 199dfstaConsumes' :: DFSTComplement state input output -> Seq input
202dfstaConsumes' = dfstaConsumes . Comp.composed 200dfstaConsumes' = dfstaConsumes . Comp.composed
203 201
204dfstaProduces :: DFST state input output -> DFSTComplement state input output -> Seq output 202dfstaProduces :: DFSTComplement state input output -> state -> Seq output
205dfstaProduces DFST{..} = snd . flip runDFSTAction' stInitial 203dfstaProduces = fmap fst . runDFSTAction'
204\end{code}
206 205
207type Debug state input output = (Show state, Show input, Show output) 206Die Unterliegende Idee von $\Rrightarrow$ ist nun im Komplement der edit-lens eine Liste von Wirkungen (eine für jedes Zeichen der Eingabe des DFSTs) und einen Cache der monoidalen Summen aller kontinuirlichen Teillisten zu halten.
208 207
209type LState state input output = (Natural, (state, Maybe (input, Natural))) 208Wir können die alte DFST-Wirkung zunächst anhand des Intervalls indem der input-String von allen gegebenen edits betroffen ist in einen unveränderten Prefix und einen womöglich betroffenen Suffix unterteilen.
209
210Da wir wissen welche Stelle im input-String vom ersten gegebenen edit betroffen ist können wir, anhand der Wirkung des Teilstücks bis zu jener Stelle, den betroffenen Suffix wiederum teilen.
211Die Wirkung ab der betroffenen Stelle im input-String können wir als Komposition der Wirkung der durch den edit betroffenen Stelle und derer aller Zeichen danach bestimmen.
212Nun gilt es nur noch die Differenz (als `StringEdits`) des vorherigen Suffixes im output-String und des aus der gerade berechneten Wirkung zu bestimmen, wir bedienen uns hierzu dem Unix Standard-Diff-Algorithmus zwischen der ursprünglichen Ausgabe und dem Ergebnis der Iteration des Verfahrens auf alle gegebenen edits.
213
214Für die asymmetrische edit-lens entgegen der DFST-Richtung $\Lleftarrow$ verwenden wir Breitensuche über die Zustände des DFST innerhalb eines iterative vergrößerten Intervalls:
215
216Wir bestimmen zunächst (`affected`) eine obere Schranke an das Intervall in dem der Ausgabe-String vom edit betroffen ist und generieren eine von dort quadratisch wachsende Serie von Intervallen.
217
218Für jedes Intervall ("lokalere" Änderungen werden präferiert) schränken wir zunächst den DFST (zur einfachereren Implementierung in seiner Darstellung als FST) vermöge \texttt{restrictOutput} derart ein, dass nur die gewünschte Ausgabe produziert werden kann.
210 219
211dfstLens :: forall state input output. (Ord state, Ord input, Ord output, Debug state input output) => DFST state input output -> EditLens (DFSTComplement state input output) (StringEdits input) (StringEdits output) 220Wir betrachten dann in jedem Schritt (beginnend mit dem initialen Zustand des DFST) alle ausgehenden Transitionen und ziehen hierbei jene vor, die im vorherigen Lauf (gespeichert im Komplement der edit-lens), ebenfalls genommen wurden.
221Abweichungen vom im Komplement gespeicherten Lauf lassen wir nur innerhalb des betrachteten Intervalls zu und wählen in diesem Fall einen Edit auf der Eingabe, der die gewählte Abweichung produziert.
222Es wird zudem, wie für Breitensuche üblich, jeder besuchte Zustand markiert und ausgehende Transitionen nicht ein zweites mal betrachtet.
223
224Erreichen wir einen finalen Zustand (wegen der Einschränkung des DFSTs wurde dann auch genau die gewünschte Ausgabe produziert), so fügen wir an die gesammelten Eingabe-edits eine Serie von deletions an, die den noch nicht konsumierten suffix der Eingabe verwerfen und brechen die Suche unter Rückgabe der Eingabe-edits und des neuen Laufs ab.
225
226In Haskell formulieren wir das vorzeitige Abbrechen der Suche indem wir eine vollständige Liste von Rückgabe-Kandidaten konstruieren und dann immer ihr erstes Element zurück geben.
227Wegen der verzögerten Auswertungsstrategie von Haskell wird auch tatsächlich nur der erste Rückgabe-Kandidat konstruiert.
228
229\begin{comment}
230\begin{code}
231type LState state input output = (Natural, (state, Maybe (input, Natural)))
232\end{code}
233\end{comment}
234\begin{code}
235dfstLens :: forall state input output. (Ord state, Ord input, Ord output, Show state, Show input, Show output) => DFST state input output -> EditLens (DFSTComplement state input output) (StringEdits Natural input) (StringEdits Natural output)
236\end{code}
237\begin{comment}
238\begin{code}
212dfstLens dfst@DFST{..} = EditLens ground propR propL 239dfstLens dfst@DFST{..} = EditLens ground propR propL
213 where 240 where
214 ground :: DFSTComplement state input output 241 ground :: DFSTComplement state input output
215 ground = Comp.fromList [] 242 ground = mempty
216 243
217 propR :: (DFSTComplement state input output, StringEdits input) -> (DFSTComplement state input output, StringEdits output) 244 propR :: (DFSTComplement state input output, StringEdits Natural input) -> (DFSTComplement state input output, StringEdits Natural output)
218 propR (c, SEFail) = (c, SEFail) 245 propR (c, SEFail) = (c, SEFail)
219 propR (c, StringEdits Seq.Empty) = (c, mempty) 246 propR (c, StringEdits Seq.Empty) = (c, mempty)
220 propR (c, StringEdits (es :> e)) 247 propR (c, es'@(StringEdits (es :> e)))
221 | fst (runDFSTAction' c' stInitial) `Set.member` stAccept = (c', es' <> es'') 248 | (_, Just final) <- runDFSTAction' c' stInitial
222 | otherwise = (c', SEFail) 249 , final `Set.member` stAccept
250 = (c', rEs)
251 | otherwise
252 = (c, SEFail)
223 where 253 where
254 Just int = affected es'
255 (cAffSuffix, cAffPrefix) = Comp.splitAt (Comp.length c - fromIntegral (Int.inf int)) c
224 (cSuffix, cPrefix) = Comp.splitAt (Comp.length c - (e ^. sePos . from enum)) c 256 (cSuffix, cPrefix) = Comp.splitAt (Comp.length c - (e ^. sePos . from enum)) c
225 cSuffix' 257 cSuffix'
226 | Delete _ <- e = Comp.take (pred $ Comp.length cSuffix) cSuffix -- TODO unsafe 258 | Delete _ <- e
259 , Comp.length cSuffix > 0 = Comp.take (pred $ Comp.length cSuffix) cSuffix
227 | Insert _ nChar <- e = cSuffix <> Comp.singleton (DFSTAction (\x -> runDFST' dfst x (pure nChar) Seq.empty) (Seq.singleton nChar)) 260 | Insert _ nChar <- e = cSuffix <> Comp.singleton (DFSTAction (\x -> runDFST' dfst x (pure nChar) Seq.empty) (Seq.singleton nChar))
228 (pState, pOutput) = runDFSTAction' cPrefix stInitial 261 | otherwise = Comp.singleton $ DFSTAction (\_ -> (Seq.empty, Nothing)) Seq.empty
229 (_, sOutput ) = runDFSTAction' cSuffix pState 262 (c', _) = propR (cSuffix' <> cPrefix, StringEdits es)
230 (_, sOutput') = runDFSTAction' cSuffix' pState 263 (cAffSuffix', _) = Comp.splitAt (Comp.length c' - Comp.length cAffPrefix) c'
231 (c', es') = propR (cSuffix' <> cPrefix, StringEdits es) 264 (_, Just pFinal) = runDFSTAction' cPrefix stInitial
232 es'' = strDiff sOutput sOutput' & stringEdits . sePos . from enum +~ Seq.length pOutput 265 rEs = strDiff (fst $ runDFSTAction' cAffSuffix pFinal) (fst $ runDFSTAction' cAffSuffix' pFinal) & stringEdits . sePos . from enum +~ length (dfstaProduces cAffPrefix stInitial)
233 266
234 267
235 propL :: (DFSTComplement state input output, StringEdits output) -> (DFSTComplement state input output, StringEdits input) 268 propL :: (DFSTComplement state input output, StringEdits Natural output) -> (DFSTComplement state input output, StringEdits Natural input)
236 propL (c, StringEdits Seq.Empty) = (c, mempty) 269 propL (c, StringEdits Seq.Empty) = (c, mempty)
237 propL (c, es) = fromMaybe (c, SEFail) $ do 270 propL (c, es) = fromMaybe (c, SEFail) $ do
271 let prevOut = dfstaProduces c stInitial
238 newOut <- prevOut `apply` es 272 newOut <- prevOut `apply` es
239 affected' <- affected es 273 affected' <- affected es
240 let outFST :: FST (LState state input output) input output 274 let outFST :: FST (LState state input output) input output
241 outFST = wordFST newOut `productFST` toFST dfst 275 -- outFST = wordFST newOut `productFST` toFST dfst
276 outFST = restrictOutput newOut $ toFST dfst
277
278 trace x y = flip seq y . unsafePerformIO $ appendFile "lens.log" (x <> "\n\n")
279
242 inflate by int 280 inflate by int
243 | Int.null int = Int.empty 281 | Int.null int = Int.empty
244 | inf >= by = inf - by Int.... sup + by 282 | inf >= by = inf - by Int.... sup + by
@@ -251,53 +289,90 @@ dfstLens dfst@DFST{..} = EditLens ground propR propL
251 max = fromIntegral $ Seq.length newOut 289 max = fromIntegral $ Seq.length newOut
252 all = 0 Int.... max 290 all = 0 Int.... max
253 runCandidates :: Interval Natural -- ^ Departure from complement-run only permitted within interval (to guarantee locality) 291 runCandidates :: Interval Natural -- ^ Departure from complement-run only permitted within interval (to guarantee locality)
254 -> [ ( Seq (LState state input output, Maybe output) -- ^ Computed run 292 -> [ ( Seq (LState state input output, Maybe output) -- ^ Computed run
255 , StringEdits input 293 , StringEdits Natural input
256 , DFSTComplement state input output 294 , DFSTComplement state input output
257 ) 295 )
258 ] 296 ]
259 runCandidates focus = continueRun (Seq.empty, mempty) (c, mempty) 0 297 runCandidates focus = map ((,,) <$> view _1 <*> view _2 <*> view (_3 . _2)) $ go Set.empty [(Seq.empty, mempty, (c, mempty), 0)]
260 where 298 where
261 continueRun :: (Seq (LState state input output, Maybe output), StringEdits input) 299 go _ [] = []
300 go visited (args@(run, edits, compZipper, inP) : alts) =
301 [ (run', finalizeEdits remC inP' edits', compZipper', inP') | (run', edits', compZipper'@(remC, _), inP') <- args : conts, isFinal run' ]
302 ++ go visited' (alts ++ conts)
303 where
304 conts
305 | lastSt <- view _1 <$> Seq.lookup (pred $ Seq.length run) run
306 , lastSt `Set.member` visited = []
307 | otherwise = continueRun edits compZipper inP run
308 visited' = Set.insert (view _1 <$> Seq.lookup (pred $ Seq.length run) run) visited
309
310 isFinal :: Seq (LState state input output, Maybe output) -> Bool
311 -- ^ Is the final state of the run a final state of the DFST?
312 isFinal Seq.Empty = (0, (stInitial, Nothing)) `Set.member` FST.stAccept outFST
313 && (0 Int.... fromIntegral (Seq.length newOut)) `Int.isSubsetOf` focus
314 isFinal (_ :> (lastSt, _)) = lastSt `Set.member` FST.stAccept outFST
315
316 finalizeEdits :: DFSTComplement state input output -- ^ Remaining complement
317 -> Natural -- ^ Input position
318 -> StringEdits Natural input -> StringEdits Natural input
319 finalizeEdits remC inP = mappend . mconcat . replicate (Seq.length $ dfstaConsumes' remC) $ delete inP
320
321 continueRun :: StringEdits Natural input
262 -> (DFSTComplement state input output, DFSTComplement state input output) -- ^ Zipper into complement 322 -> (DFSTComplement state input output, DFSTComplement state input output) -- ^ Zipper into complement
263 -> Natural -- ^ Input position 323 -> Natural -- ^ Input position
264 -> [(Seq (LState state input output, Maybe output), StringEdits input, DFSTComplement state input output)] 324 -> Seq (LState state input output, Maybe output)
265 continueRun (run, inEdits) (c', remC) inP = do 325 -> [ ( Seq (LState state input output, Maybe output)
326 , StringEdits Natural input
327 , (DFSTComplement state input output, DFSTComplement state input output)
328 , Natural
329 )
330 ]
331 -- ^ Nondeterministically make a single further step, continueing a given run
332 continueRun inEdits (c', remC) inP run = do
266 let 333 let
267 pos :: Natural 334 pos :: Natural
268 pos = fromIntegral $ Comp.length c - Comp.length c' 335 -- pos = fromIntegral $ Comp.length c - Comp.length c' -- FIXME: should use length of dfstaProduces
336 pos = fromIntegral . Seq.length $ dfstaProduces remC stInitial
269 (c'', step) = Comp.splitAt (pred $ Comp.length c') c' -- TODO: unsafe? 337 (c'', step) = Comp.splitAt (pred $ Comp.length c') c' -- TODO: unsafe?
270 current :: LState state input output 338 current :: LState state input output
271 current 339 current
272 | Seq.Empty <- run = (0, (stInitial, Nothing)) 340 | Seq.Empty <- run = (0, (stInitial, Nothing))
273 | (_ :> (st, _)) <- run = st 341 | (_ :> (st, _)) <- run = st
274 current' :: state 342 current' :: state
275 current' = let (_, (st, _)) = current
276 in st
277 next' :: state
278 next' = fst . runDFSTAction' step $ current'
279 oldIn :: Maybe input 343 oldIn :: Maybe input
280 oldIn = Seq.lookup 0 $ dfstaConsumes' step 344 (current', oldIn)
345 | (_ :> ((_, (st, _)), _)) <- rest
346 , (_ :> ((_, (_, Just (partialIn, _))), _)) <- partial = (st, Just partialIn)
347 | (_ :> ((_, (_, Just (partialIn, _))), _)) <- partial = (stInitial, Just partialIn)
348 | Seq.Empty <- rest = (stInitial, Seq.lookup 0 $ dfstaConsumes' step)
349 | (_ :> ((_, (st, _)), _)) <- rest = (st, Seq.lookup 0 $ dfstaConsumes' step)
350 where
351 (partial, rest) = Seq.spanr (\((_, (_, inp)), _) -> isJust inp) run
352 next' <- trace (show ("next'", pos, focus, run, (current', oldIn), current, dfstaConsumes' step, runDFST' dfst current' (maybe Seq.empty Seq.singleton oldIn) Seq.empty)) . maybeToList . snd $ runDFST' dfst current' (maybe Seq.empty Seq.singleton oldIn) Seq.empty
353 let
281 outgoing :: LState state input output -> [(LState state input output, Maybe input, Maybe output)] 354 outgoing :: LState state input output -> [(LState state input output, Maybe input, Maybe output)]
282 outgoing current = let go (st, minS) os acc 355 outgoing current = let go (st, minS) outs acc
283 | st == current = ($ acc) $ Set.fold (\(st', moutS) -> (. ((st', minS, moutS) :))) id os 356 | st == current = Set.foldr (\(st', moutS) -> ((st', minS, moutS) :)) acc outs
284 | otherwise = acc 357 | otherwise = acc
285 in Map.foldrWithKey go [] $ FST.stTransition outFST 358 in Map.foldrWithKey go [] $ FST.stTransition outFST
286 isPreferred :: (LState state input output, Maybe input, Maybe output) -> Bool 359 isPreferred :: (LState state input output, Maybe input, Maybe output) -> Bool
287 isPreferred ((_, (st, Nothing)), inS, _) = st == next' && (fromMaybe True $ (==) <$> oldIn <*> inS) 360 isPreferred ((_, (st, Nothing)), _, _) = st == next'
288 isPreferred (st, _, _) = any isPreferred $ outgoing st -- By construction of `outFST`, `outgoing st` is a singleton 361 isPreferred (st@(_, (_, Just (inS , _))), _, _) = maybe True (== inS) oldIn && any isPreferred (outgoing st) -- By construction of `outFST`, `outgoing st` is a singleton in this case
289 (preferred, alternate) = partition isPreferred $ outgoing current 362 (preferred, alternate) = partition isPreferred $ outgoing current
290 assocEdit :: (LState state input output, Maybe input, Maybe output) -- ^ Transition 363 assocEdit :: (LState state input output, Maybe input, Maybe output) -- ^ Transition
291 -> [ ( (DFSTComplement state input output, DFSTComplement state input output) -- ^ new `(c', remC)`, i.e. complement-zipper `(c', remC)` but with edit applied 364 -> [ ( (DFSTComplement state input output, DFSTComplement state input output) -- ^ new `(c', remC)`, i.e. complement-zipper `(c', remC)` but with edit applied
292 , StringEdits input 365 , StringEdits Natural input
293 , Natural 366 , Natural
294 ) 367 )
295 ] 368 ]
296 assocEdit (_, Just inS, _) 369 assocEdit (_, Just inS, _)
297 | oldIn == Just inS = [((c'', step <> remC), mempty, succ inP)] 370 | oldIn == Just inS = [ ((c'', step <> remC), mempty, succ inP) ]
298 | isJust oldIn = [((c'', altStep inS <> remC), replace inP inS, succ inP), ((c', altStep inS <> remC), insert inP inS, succ inP)] 371 | isJust oldIn = [ ((c', altStep inS <> remC), insert inP inS, succ inP)
299 | otherwise = [((c', altStep inS <> remC), insert inP inS, succ inP)] 372 , ((c'', altStep inS <> remC), replace inP inS, succ inP)
300 assocEdit (_, Nothing, _) = [((c', remC), mempty, inP)] -- TODO: is this correct? 373 ]
374 | otherwise = [ ((c', altStep inS <> remC), insert inP inS, succ inP) ]
375 assocEdit (_, Nothing, _) = [((c', remC), mempty, inP)]
301 altStep :: input -> DFSTComplement state input output 376 altStep :: input -> DFSTComplement state input output
302 altStep inS = Comp.singleton DFSTAction{..} 377 altStep inS = Comp.singleton DFSTAction{..}
303 where 378 where
@@ -306,7 +381,7 @@ dfstLens dfst@DFST{..} = EditLens ground propR propL
306 options 381 options
307 | pos `Int.member` focus = preferred ++ alternate 382 | pos `Int.member` focus = preferred ++ alternate
308 | otherwise = preferred 383 | otherwise = preferred
309 choice@(next, inS, outS) <- options 384 choice@(next, inS, outS) <- trace (unlines $ show (pretty outFST) : map show options) options
310 ((c3, remC'), inEdits', inP') <- assocEdit choice 385 ((c3, remC'), inEdits', inP') <- assocEdit choice
311 -- let 386 -- let
312 -- -- | Replace prefix of old complement to reflect current candidate 387 -- -- | Replace prefix of old complement to reflect current candidate
@@ -317,27 +392,70 @@ dfstLens dfst@DFST{..} = EditLens ground propR propL
317 -- fin 392 -- fin
318 -- | (trans, inEs, newComplement) <- acc = (trans, dropSuffix <> inEs, newComplement) 393 -- | (trans, inEs, newComplement) <- acc = (trans, dropSuffix <> inEs, newComplement)
319 let 394 let
320 acc = (run :> (next, outS), inEdits' <> inEdits) 395 trans = run :> (next, outS)
321 dropSuffix = mconcat (replicate (Seq.length $ dfstaConsumes' c3) $ delete inP') 396 inEs = inEdits' <> inEdits
322 fin 397 -- dropSuffix = mconcat (replicate (Seq.length $ dfstaConsumes' c3) $ delete inP')
323 | (trans, inEs) <- acc = (trans, dropSuffix <> inEs, remC') 398 -- fin
324 bool id (fin :) (next `Set.member` FST.stAccept outFST) $ continueRun acc (c3, remC') inP' 399 -- | (trans, inEs) <- acc = (trans, dropSuffix <> inEs, remC')
400 -- bool id (over _BFS $ cons fin) (next `Set.member` FST.stAccept outFST) $ continueRun acc (c3, remC') inP'
401 return (trans, inEs, (c3, remC'), inP')
325 402
326 -- Properties of the edits computed are determined mostly by the order candidates are generated below 403 -- Properties of the edits computed are determined mostly by the order candidates are generated below
327 -- (_, inEs, c') <- (\xs -> foldr (\x f -> x `seq` f) listToMaybe xs $ xs) $ traceShowId fragmentIntervals >>= (\x -> (\y@(y1, y2, _) -> traceShow (y1, y2) y) <$> runCandidates x) 404 -- (_, inEs, c') <- (\xs -> foldr (\x f -> x `seq` f) listToMaybe xs $ xs) $ traceShowId fragmentIntervals >>= (\x -> (\y@(y1, y2, _) -> traceShow (y1, y2) y) <$> runCandidates x)
328 405
329 (_, inEs, c') <- listToMaybe $ runCandidates =<< fragmentIntervals 406 fmap ((,) <$> view _3 <*> view _2) . listToMaybe $ runCandidates =<< fragmentIntervals
330
331 return (c', inEs)
332 where
333 (_, prevOut) = runDFSTAction' c stInitial
334 407
335strDiff :: forall sym. Eq sym => Seq sym -> Seq sym -> StringEdits sym 408strDiff :: forall sym pos. (Eq sym, Integral pos) => Seq sym -> Seq sym -> StringEdits pos sym
336-- ^ @strDiff a b@ calculates a set of edits, which, when applied to @a@, produce @b@ 409-- ^ @strDiff a b@ calculates a set of edits, which, when applied to @a@, produce @b@
337strDiff a b = snd . foldr toEdit (0, mempty) $ (getDiff `on` toList) a b 410strDiff a b = snd . foldl toEdit (0, mempty) $ (getDiff `on` toList) a b
411 where
412 toEdit :: (pos, StringEdits pos sym) -> Diff sym -> (pos, StringEdits pos sym)
413 toEdit (n, es) (Diff.Both _ _) = (succ n, es)
414 toEdit (n, es) (Diff.First _ ) = (n, delete n <> es)
415 toEdit (n, es) (Diff.Second c) = (succ n, insert n c <> es)
416\end{code}
417\end{comment}
418
419Um eine obere Schranke an das von einer Serie von edits betroffene Intervall zu bestimmen ordnen wir zunächst jeder von mindestens einem atomaren edit betroffenen Position $n$ im Eingabe-Wort einen $\text{offset}_n = \text{\# deletions} - \text{\# inserts}$ zu.
420Das gesuchte Intervall ist nun $(\text{minK}, \text{maxK})$, mit $\text{minK}$ der Position im Eingabe-Wort mit niedrigstem $\text{offset}$ und $\text{maxK}$ die Position im Eingabe-Wort mit höchstem $\text{offset}$, $\text{maxK}^\prime$, modifiziert um das Maximum aus $\{ 0 \} \cup \{ \text{maxK}_n \colon n \in \{ 0 \ldots \text{maxK}^\prime \} \}$ wobei $\text{maxK}_n = -1 \cdot (n + \text{offset}_n)$ an Position $n$ ist.
421
422\begin{code}
423affected :: forall char. StringEdits Natural char -> Maybe (Interval Natural)
424-- ^ For a given set of edits @es@ return the interval @i = a ... b@ such that for any given string @str@ of sufficient length the following holds:
425--
426-- - For all @n :: Natural@: @n < a ==> str ! n == (str `apply` es) ! n@
427-- - There exists a @k :: Integer@ such that for all @n :: Integer@: @n > b ==> str ! (n + k) == (str `apply` es) ! n@
428--
429-- Intuitively: for any character @c@ of the new string @str `apply` es@ there exists a corresponding character in @str@ (offset by either 0 or a constant shift @k@) if the index of @c@ is /not/ contained in @affected es@.
430\end{code}
431\begin{comment}
432\begin{code}
433affected SEFail = Nothing
434affected (StringEdits es) = Just . toInterval $ go es Map.empty
338 where 435 where
339 toEdit :: Diff sym -> (Natural, StringEdits sym) -> (Natural, StringEdits sym) 436 toInterval :: Map Natural Integer -> Interval Natural
340 toEdit (Diff.Both _ _) (n, es) = (succ n, es) 437 toInterval map
341 toEdit (Diff.First _ ) (n, es) = (n, delete n <> es) 438 | Just (((minK, _), _), ((maxK, _), _)) <- (,) <$> Map.minViewWithKey map <*> Map.maxViewWithKey map
342 toEdit (Diff.Second c) (n, es) = (succ n, insert n c <> es) 439 = let
440 maxV' = maximum . (0 :) $ do
441 offset <- [0..maxK]
442 v <- maybeToList $ Map.lookup (maxK - offset) map
443 v' <- maybeToList . fmap fromInteger $ negate v <$ guard (v <= 0)
444 guard $ v' >= succ offset
445 return $ v' - offset
446 in (minK Int.... maxK + maxV')
447 | otherwise
448 = Int.empty
449 go :: Seq (StringEdit Natural char) -> Map Natural Integer -> Map Natural Integer
450 go Seq.Empty offsets = offsets
451 go (es :> e) offsets = go es offsets'
452 where
453 p = e ^. sePos
454 -- p' = fromIntegral $ Map.foldrWithKey (\k o p -> bool (fromIntegral p) (o + p) $ k < fromIntegral p) (fromIntegral p) offsets
455 offsets' = Map.alter (Just . myOffset . fromMaybe 0) p offsets
456 myOffset :: Integer -> Integer
457 myOffset
458 | Insert _ _ <- e = pred
459 | Delete _ <- e = succ
343\end{code} 460\end{code}
461\end{comment}
diff --git a/edit-lens/src/Control/Edit.lhs b/edit-lens/src/Control/Edit.lhs
index 19fe336..8c4f045 100644
--- a/edit-lens/src/Control/Edit.lhs
+++ b/edit-lens/src/Control/Edit.lhs
@@ -16,7 +16,7 @@ Ein Modul $M$ ist eine \emph{partielle Monoidwirkung} zusammen mit einem schwach
16 16
17und einem Element $\init_M \in \Dom M$, sodass gilt: 17und einem Element $\init_M \in \Dom M$, sodass gilt:
18 18
19$$ \forall m \in \Dom M \ \exists \partial m \in \partial M \colon m = \init_M \cdot \partial m$$ 19$$\forall m \in \Dom M \ \exists \partial m \in \partial M \colon m = \init_M \cdot \partial m$$
20 20
21Wir führen außerdem eine Abbildung $(\init_M \cdot)^{-1} \colon \Dom M \to \partial m$ ein, die ein $m$ auf ein arbiträr gewähltes $\partial m$ abbildet für das $\init_M \cdot \partial m = m$ gilt. 21Wir führen außerdem eine Abbildung $(\init_M \cdot)^{-1} \colon \Dom M \to \partial m$ ein, die ein $m$ auf ein arbiträr gewähltes $\partial m$ abbildet für das $\init_M \cdot \partial m = m$ gilt.
22 22
@@ -24,6 +24,7 @@ In Haskell charakterisieren wir Moduln über ihren Monoid, d.h. die Wahl des Mon
24Eine Repräsentierung als Typklasse bietet sich an: 24Eine Repräsentierung als Typklasse bietet sich an:
25 25
26\begin{code} 26\begin{code}
27-- `apply` binds one level weaker than monoid composition `(<>)`
27infix 5 `apply` 28infix 5 `apply`
28 29
29class Monoid m => Module m where 30class Monoid m => Module m where
@@ -42,11 +43,12 @@ class Monoid m => Module m where
42 43
43infixl 5 `apply'` 44infixl 5 `apply'`
44apply' :: Module m => Maybe (Domain m) -> m -> Maybe (Domain m) 45apply' :: Module m => Maybe (Domain m) -> m -> Maybe (Domain m)
46-- ^ `apply` under `Maybe`s monad-structure
45apply' md e = flip apply e =<< md 47apply' md e = flip apply e =<< md
46\end{code} 48\end{code}
47\end{defn} 49\end{defn}
48 50
49Wir weichen von der originalen Definition von Moduln aus \cite{hofmann2012edit} darin ab, dass wir für das ausgezeichnete Element $\init_X$ des Trägers explizit (und konstruktiv) fordern, dass es ein schwach-initiales Element bzgl. der Monoidwirkung sei. 51Wir weichen von der originalen Definition von Moduln aus \cite{hofmann2012edit} darin ab, dass wir für das ausgezeichnete Element $\init_X$ des Trägers explizit (und konstruktiv\footnote{$(\init_M \cdot)^{-1}$}) fordern, dass es ein schwach-initiales Element bzgl. der Monoidwirkung sei.
50 52
51\begin{comment} 53\begin{comment}
52\begin{defn}[Modulhomomorphismen] 54\begin{defn}[Modulhomomorphismen]
diff --git a/edit-lens/src/Control/FST.lhs b/edit-lens/src/Control/FST.lhs
index 9298e11..9aa5341 100644
--- a/edit-lens/src/Control/FST.lhs
+++ b/edit-lens/src/Control/FST.lhs
@@ -1,3 +1,4 @@
1\begin{comment}
1\begin{code} 2\begin{code}
2{-# LANGUAGE ScopedTypeVariables 3{-# LANGUAGE ScopedTypeVariables
3#-} 4#-}
@@ -7,16 +8,18 @@ Description: Finite state transducers with epsilon-transitions
7-} 8-}
8module Control.FST 9module Control.FST
9 ( FST(..) 10 ( FST(..)
11 -- * Using FSTs
12 , runFST, runFST', step
10 -- * Constructing FSTs 13 -- * Constructing FSTs
11 , wordFST 14 , wordFST
12 -- * Operations on FSTs 15 -- * Operations on FSTs
13 , productFST, restrictFST 16 , productFST, restrictOutput, restrictFST
14 -- * Debugging Utilities 17 -- * Debugging Utilities
15 , liveFST 18 , liveFST
16 ) where 19 ) where
17 20
18import Data.Map.Strict (Map, (!?)) 21import Data.Map.Lazy (Map, (!?), (!))
19import qualified Data.Map.Strict as Map 22import qualified Data.Map.Lazy as Map
20 23
21import Data.Set (Set) 24import Data.Set (Set)
22import qualified Data.Set as Set 25import qualified Data.Set as Set
@@ -24,7 +27,7 @@ import qualified Data.Set as Set
24import Data.Sequence (Seq) 27import Data.Sequence (Seq)
25import qualified Data.Sequence as Seq 28import qualified Data.Sequence as Seq
26 29
27import Data.Maybe (mapMaybe, fromMaybe, isJust, fromJust) 30import Data.Maybe (mapMaybe, fromMaybe, isJust, fromJust, isNothing)
28 31
29import Numeric.Natural 32import Numeric.Natural
30 33
@@ -35,12 +38,28 @@ import Control.Monad.State.Strict
35import Text.PrettyPrint.Leijen (Pretty(..)) 38import Text.PrettyPrint.Leijen (Pretty(..))
36import qualified Text.PrettyPrint.Leijen as PP 39import qualified Text.PrettyPrint.Leijen as PP
37 40
38data FST state input output = FST 41\end{code}
42\end{comment}
43
44\begin{defn}[Finite state transducers]
45Unter einem finite state transducer verstehen wir ein 6-Tupel $(\Sigma, \Delta, Q, I, F, E)$ mit $\Sigma$ dem endlichen Eingabe-Alphabet, $\Delta$ dem endlichen Ausgabe-Alphabet, $Q$ einer endlichen Menge an Zuständen, $I \subset Q$ der Menge von initialen Zuständen, $F \subset Q$ der Menge von akzeptierenden Endzuständen, und $E \subset Q \times (\Sigma \cup \{ \epsilon \}) \times (\Delta \cup \{ \epsilon \}) \times Q$ der Transitionsrelation.
46
47Semantisch ist ein finite state transducer ein endlicher Automat erweitert um die Fähigkeit bei Zustandsübergängen ein Symbol aus seinem Ausgabe-Alphabet an ein Ausgabe-Wort anzuhängen.
48
49In Haskell lockern wir die Anforderung, dass die Ein- und Ausgabe-Alphabete endlich sein müssen und annotieren sie nur im Typsystem.
50Zudem speichern wir die Transitionsrelation als multimap um effiziente lookups von Zustand-Eingabe-Paaren zu ermöglichen.
51
52\begin{code}
53dFSeata FST state input output = FST
39 { stInitial :: Set state 54 { stInitial :: Set state
40 , stTransition :: Map (state, Maybe input) (Set (state, Maybe output)) 55 , stTransition :: Map (state, Maybe input) (Set (state, Maybe output))
41 , stAccept :: Set state 56 , stAccept :: Set state
42 } deriving (Show, Read) 57 } deriving (Show, Read)
58\end{code}
59\end{defn}
43 60
61\begin{comment}
62\begin{code}
44instance (Show state, Show input, Show output) => Pretty (FST state input output) where 63instance (Show state, Show input, Show output) => Pretty (FST state input output) where
45 pretty FST{..} = PP.vsep 64 pretty FST{..} = PP.vsep
46 [ PP.text "Initial states:" PP.</> PP.hang 2 (list . map (PP.text . show) $ Set.toAscList stInitial) 65 [ PP.text "Initial states:" PP.</> PP.hang 2 (list . map (PP.text . show) $ Set.toAscList stInitial)
@@ -55,62 +74,164 @@ instance (Show state, Show input, Show output) => Pretty (FST state input output
55 ] 74 ]
56 where 75 where
57 label :: Show a => Maybe a -> PP.Doc 76 label :: Show a => Maybe a -> PP.Doc
58 label = maybe (PP.text "ɛ") (PP.text . show) 77 label = PP.text . maybe "ɛ" show
59 list :: [PP.Doc] -> PP.Doc 78 list :: [PP.Doc] -> PP.Doc
60 list = PP.encloseSep (PP.lbracket PP.<> PP.space) (PP.space PP.<> PP.rbracket) (PP.comma PP.<> PP.space) 79 list = PP.encloseSep (PP.lbracket PP.<> PP.space) (PP.space PP.<> PP.rbracket) (PP.comma PP.<> PP.space)
80\end{code}
81\end{comment}
61 82
62runFST :: forall input output state. (Ord input, Ord output, Ord state) => FST state input output -> Seq input -> [Seq output] 83Wir definieren die Auswertung von finite state transducers induktiv indem wir zunächst angeben wie ein einzelner Auswertungs-Schritt erfolgt.
63runFST = fmap (map $ catMaybes . fmap (view _2) . view _2) . runFST' 84
64 where 85Hierzu kommentieren wir die Haskell-Implementierung eines Auswertungs-Schritts.
65 catMaybes = fmap fromJust . Seq.filter isJust 86Notwendigerweise ist die Auswertung eines FSTs nicht deterministisch, wir produzieren daher eine Liste von möglichen Resultaten in keiner besonderen Reihenfolge.
87
88\begin{code}
89step :: forall input output state. (Ord input, Ord output, Ord state)
90 => FST state input output
91 -> Maybe state -- ^ Current state
92 -> Maybe input -- ^ Head of remaining input
93 -> [(Maybe input, state, Maybe output)] -- ^ Tuples of unconsumed input, next state, and produced output
94step FST{..} Nothing inS = (\s -> (inS, s, Nothing)) <$> Set.toList stInitial
95\end{code}
96Ist kein vorheriger Schritt erfolgt so wählen wir einen initialen Zustand, konsumieren keine Eingabe, und produzieren keine Ausgabe.
97
98\begin{code}
99step FST{..} (Just c) inS = let
100 consuming = fromMaybe Set.empty $ Map.lookup (c, inS) stTransition
101 unconsuming = fromMaybe Set.empty $ Map.lookup (c, Nothing) stTransition
102 in Set.toList $ Set.map (\(n, mOut) -> (Nothing, n, mOut)) consuming `Set.union` Set.map (\(n, mOut) -> (inS, n, mOut)) unconsuming
103\end{code}
104Ansonsten wählen wir einen Eintrag aus der Transitionstabelle für den aktuellen Zustand, der entweder keine oder die gegebene Eingabe konsumiert.
105Im Ergebnis geben wir den nächsten Zustand, die Ausgabe aus der Transitionstabelle, und ob die Eingabe konsumiert wurde an.
66 106
107\begin{code}
67runFST' :: forall input output state. (Ord input, Ord output, Ord state) 108runFST' :: forall input output state. (Ord input, Ord output, Ord state)
68 => FST state input output 109 => FST state input output
69 -> Seq input 110 -> Seq input
70 -> [(state, Seq (state, Maybe output))] -- ^ Tuples of initial state and chosen transitions; not neccessarily finite 111 -> [(state, Seq (state, Maybe output))] -- ^ Tuples of initial state and chosen transitions; not neccessarily finite
71-- ^ Compute all possible runs on the given input 112-- ^ Compute all possible runs on the given input
72runFST' fst Seq.Empty = guardAccept $ (\(_, st, _) -> (st, Seq.Empty)) <$> step fst Nothing Nothing 113runFST' fst@FST{..} cs = do
73runFST' fst cs = guardAccept $ do 114 initial <- view _2 <$> step fst Nothing Nothing -- Nondeterministically choose an initial state
74 initial <- view _2 <$> step fst Nothing Nothing 115 go (initial, Seq.Empty) cs -- Recursively extend the run consisting of only the initial state
75 go (initial, Seq.Empty) cs
76 where 116 where
77 guardAccept res = do
78 (initial, path) <- res
79 let
80 finalState
81 | (_ :> (st, _)) <- path = st
82 | otherwise = initial
83 guard $ finalState `Set.member` stAccept
84 return res
85
86 go :: (state, Seq (state, Maybe output)) -> Seq input-> [(state, Seq (state, Maybe output))] 117 go :: (state, Seq (state, Maybe output)) -> Seq input-> [(state, Seq (state, Maybe output))]
118 -- ^ Uses `step` on last state of run and nondeterministically chooses between alternatives given
119\end{code}
120
121Um alle möglichen Läufe auf einer gegebenen Eingabe zu berechnen wenden wir
122rekursiv \texttt{step} auf den letzten Zustand des Laufs (und der verbleibenden
123Eingabe) an bis keine Eingabe verbleibt und der letzte Zustand in der Menge der
124akzeptierenden Endzustände liegt.
125
126\begin{comment}
127\begin{code}
87 go (initial, path) cs = do 128 go (initial, path) cs = do
88 let 129 let
130 -- | Determine last state of the run
89 current 131 current
90 | (_ :> (st, _)) <- path = st 132 | (_ :> (st, _)) <- path = st
91 | otherwise = initial 133 | otherwise = initial
92 (head, next, out) <- step fst (Just current) (Seq.lookup 0 cs) 134 case step fst (Just current) (Seq.lookup 0 cs) of
93 let 135 [] -> do
94 nPath = path :> (next, out) 136 guard $ current `Set.member` stAccept && Seq.null cs
95 ncs = maybe id (:<) head cs 137 return (initial, path)
96 go (initial, nPath) ncs 138 xs -> do
97 139 (head, next, out) <- xs
140 let
141 nPath = path :> (next, out)
142 ncs
143 | (_ :< cs') <- cs = maybe id (:<) head cs'
144 | otherwise = Seq.Empty
145 go (initial, nPath) ncs
146\end{code}
147\end{comment}
148
149Es ist gelegentlich nützlich nur die möglichen Ausgaben eines FST auf gegebener
150Eingabe zu bestimmen, wir führen eine Hilfsfunktion auf Basis von
151{\ttfamily runFST'} ein:
152
153\begin{code}
154runFST :: forall input output state. (Ord input, Ord output, Ord state) => FST state input output -> Seq input -> [Seq output]
155-- ^ Compute all possible runs on the given input and return only their output
156\end{code}
157\begin{comment}
158\begin{code}
159runFST = fmap (map $ catMaybes . fmap (view _2) . view _2) . runFST'
160 where
161 catMaybes = fmap fromJust . Seq.filter isJust
162\end{code}
163\end{comment}
164
165Wir können das Produkt zweier FSTs definieren.
166Intuitiv wollen wir beide FSTs gleichzeitig ausführen und dabei sicherstellen, dass Ein- und Ausgabe der FSTs übereinstimmen\footnote{Da wir $\epsilon$-Transitionen in FSTs erlauben müssen wir uns festlegen wann eine $\epsilon$-Transition übereinstimmt mit einer anderen Transition. Wir definieren, dass $\epsilon$ als Eingabe mit jeder anderen Eingabe (inkl. einem weiteren $\epsilon$) übereinstimmt.}.
167
168Hierfür berechnen wir das Graphen-Produkt der FSTs:
169
170\begin{defn}[FST-Produkt]
171 Gegeben zwei finite state transducer $T = (\Sigma, \Delta, Q, I, F, E)$ und $T^\prime = (\Sigma^\prime, \Delta^\prime, Q^\prime, I^\prime, F^\prime, E^\prime)$ nennen wir $T^\times = (\Sigma^\times, \Delta^\times, Q^\times, I^\times, F^\times, E^\times)$ das Produkt $T^\times = T \times T^\prime$ von $T$ und $T^\prime$.
172
173 $T^\times$ bestimmt sich als das Graphenprodukt der beiden, die FSTs unterliegenden Graphen, wobei wir die Zustandsübergänge als Kanten mit Gewichten aus dem Boolschen Semiring auffassen:
174
175 \begin{align*}
176 \Sigma^\times & = \Sigma \cap \Sigma^\prime \\
177 \Delta^\times & = \Delta \cap \Delta^\prime \\
178 Q^\times & = Q \times Q^\prime \\
179 I^\times & = I \times I^\prime \\
180 F^\times & = F \times F^\prime \\
181 E^\times & \subset Q^\times \times (\Sigma^\times \cup \{ \epsilon \}) \times (\Delta^\times \cup \{ \epsilon \}) \times Q^\times \\
182 & = \left \{ ((q, q^\prime), \sigma, \delta, (\bar{q}, \bar{q^\prime})) \colon (q, \sigma, \delta, \bar{q}) \in E, (q^\prime, \sigma^\prime, \delta^\prime, \bar{q^\prime}) \in E^\prime, \sigma = \sigma^\prime, \delta = \delta^\prime \right \}
183 \end{align*}
184\end{defn}
98 185
99step :: forall input output state. (Ord input, Ord output, Ord state)
100 => FST state input output
101 -> Maybe state -- ^ Current state
102 -> Maybe input -- ^ Head of remaining input
103 -> [(Maybe input, state, Maybe output)] -- ^ Tuples of unconsumed input, next state, and produced output
104step FST{..} Nothing inS = (\s -> (inS, s, Nothing)) <$> Set.toList stInitial
105step FST{..} (Just c) inS = let
106 consuming = fromMaybe Set.empty $ Map.lookup (c, inS) stTransition
107 unconsuming = fromMaybe Set.empty $ Map.lookup (c, Nothing) stTransition
108 in Set.toList $ Set.map (\(n, mOut) -> (Nothing, n, mOut)) consuming `Set.union` Set.map (\(n, mOut) -> (inS, n, mOut)) unconsuming
109 186
187\begin{code}
188productFST :: forall state1 state2 input output. (Ord state1, Ord state2, Ord input, Ord output) => FST state1 input output -> FST state2 input output -> FST (state1, state2) input output
189-- ^ Cartesian product on states, logical conjunction on transitions and state-properties (initial and accept)
190--
191-- This is the "natural" (that is component-wise) product when considering FSTs to be weighted in the boolean semiring.
192--
193-- Intuitively this corresponds to running both FSTs at the same time requiring them to produce the same output and agree on their input.
194\end{code}
110 195
111wordFST :: forall input output. Seq output -> FST Natural input output 196\begin{comment}
112-- ^ @wordFST str@ is the linear FST generating @str@ as output when given no input 197\begin{code}
113wordFST outs = FST 198productFST fst1 fst2 = FST
199 { stInitial = Set.fromDistinctAscList $ stInitial fst1 `setProductList` stInitial fst2
200 , stAccept = Set.fromDistinctAscList $ stAccept fst1 `setProductList` stAccept fst2
201 , stTransition = Map.fromSet transitions . Set.fromDistinctAscList . mapMaybe filterTransition $ Map.keysSet (stTransition fst1) `setProductList` Map.keysSet (stTransition fst2)
202 }
203 where
204 setProductList :: forall a b. Set a -> Set b -> [(a, b)]
205 setProductList as bs = (,) <$> Set.toAscList as <*> Set.toAscList bs
206 filterTransition :: forall label. Eq label => ((state1, Maybe label), (state2, Maybe label)) -> Maybe ((state1, state2), Maybe label)
207 filterTransition ((st1, l1), (st2, l2))
208 | l1 == l2 = Just ((st1, st2), l1)
209 | otherwise = Nothing
210 transitions :: ((state1, state2), Maybe input) -> Set ((state1, state2), Maybe output)
211 transitions ((st1, st2), inS) = Set.fromDistinctAscList . mapMaybe filterTransition $ out1 `setProductList` out2
212 where
213 out1 = fromMaybe Set.empty (stTransition fst1 !? (st1, inS)) `Set.union` fromMaybe Set.empty (stTransition fst1 !? (st1, Nothing))
214 out2 = fromMaybe Set.empty (stTransition fst2 !? (st2, inS)) `Set.union` fromMaybe Set.empty (stTransition fst2 !? (st2, Nothing))
215\end{code}
216\end{comment}
217
218Es ist später erforderlich einen FST derart einzuschränken, dass er eine gegebene Ausgabe produziert.
219
220Hierzu nehmen wir das FST-Produkt mit einem FST, der, ungeachtet der Eingabe, immer die gegebene Ausgabe produziert.
221Da die Ausgaben der beiden FSTs übereinstimmen müssen produziert das Produkt mit einem derartigen FST (solange dessen Ausgabe in keinem Sinne von der Eingabe abhängt) die gewünschte Ausgabe.
222
223Zur Konstruktion eines derartigen \emph{Wort-FST}s nehmen wir Indizes im Ausgabe-Wort (natürliche Zahlen) als Zustände.
224Übergänge sind immer entweder der Form $n \rightarrow \text{succ}(n)$, konsumieren keine Eingabe ($\epsilon$) und produzieren als Ausgabe das Zeichen am Index $n$ im Ausgabe-Wort, oder der Form $n \overset{(i, \epsilon)}{\rightarrow} n$, für jedes Eingabesymbol $i$ (um die Unabhängigkeit von der Eingabe sicherzustellen).
225Weiter ist $0$ initial und $\text{length}(\text{Ausgabe})$ der einzige akzeptierende Endzustand.
226
227\begin{code}
228wordFST :: forall input output. (Ord input, Ord output) => Set input -> Seq output -> FST Natural input output
229-- ^ @wordFST inps str@ is the linear FST generating @str@ as output when given any input with symbols in @inps@
230\end{code}
231
232\begin{comment}
233\begin{code}
234wordFST inps outs = FST
114 { stInitial = Set.singleton 0 235 { stInitial = Set.singleton 0
115 , stAccept = Set.singleton l 236 , stAccept = Set.singleton l
116 , stTransition = Map.fromSet next states 237 , stTransition = Map.fromSet next states
@@ -119,36 +240,50 @@ wordFST outs = FST
119 l :: Natural 240 l :: Natural
120 l = fromIntegral $ Seq.length outs 241 l = fromIntegral $ Seq.length outs
121 states :: Set (Natural, Maybe input) 242 states :: Set (Natural, Maybe input)
122 states = Set.fromDistinctAscList [ (n, Nothing) | n <- [0..pred l] ] 243 states
244 | Seq.null outs = Set.empty
245 | otherwise = Set.fromDistinctAscList [ (n, inp) | n <- [0..pred l], inp <- Nothing : map Just (Set.toList inps) ]
123 next :: (Natural, Maybe input) -> Set (Natural, Maybe output) 246 next :: (Natural, Maybe input) -> Set (Natural, Maybe output)
124 next (i, _) = Set.singleton (succ i, Just . Seq.index outs $ fromIntegral i) 247 next (i, _) = Set.fromList
248 [ (succ i, Just . Seq.index outs $ fromIntegral i)
249 , (i, Nothing)
250 ]
251\end{code}
252\end{comment}
125 253
126productFST :: forall state1 state2 input output. (Ord state1, Ord state2, Ord input, Ord output) => FST state1 input output -> FST state2 input output -> FST (state1, state2) input output 254Da \texttt{wordFST} zur Konstruktion eine komprehensive Menge aller Eingabesymbole benötigt verwenden wir im folgenden eine optimierte Variante des Produkts mit einem Wort-FST.
127-- ^ Cartesian product on states, logical conjunction on transitions and state-properties (initial and accept) 255
128-- 256\begin{code}
129-- This is the "natural" (that is component-wise) product when considering FSTs to be weighted in the boolean semiring. 257restrictOutput :: forall state input output. (Ord state, Ord input, Ord output) => Seq output -> FST state input output -> FST (Natural, state) input output
130-- 258-- ^ @restrictOutput out@ is equivalent to @productFST (wordFST inps out)@ where @inps@ is a comprehensive set of all input symbols @inp :: input@
131-- Intuitively this corresponds to running both FSTs at the same time requiring them to produce the same output and "agree" (epsilon agreeing with every character) on their input. 259\end{code}
132productFST fst1 fst2 = FST 260
133 { stInitial = stInitial fst1 `setProduct` stInitial fst2 261\begin{comment}
134 , stAccept = stAccept fst1 `setProduct` stAccept fst2 262\begin{code}
135 , stTransition = Map.fromSet transitions . Set.fromList . mapMaybe filterTransition . Set.toAscList $ Map.keysSet (stTransition fst1) `setProduct` Map.keysSet (stTransition fst2) 263restrictOutput out FST{..} = FST
264 { stInitial = Set.mapMonotonic (0,) stInitial
265 , stAccept = Set.mapMonotonic (l,) stAccept
266 , stTransition = Map.filter (not . Set.null) $ Map.fromList (concatMap noProgress $ Map.toList stTransition) `Map.union` Map.fromSet transitions (Set.fromDistinctAscList [((wSt, inSt), inSym) | wSt <- Set.toAscList wordStates, (inSt, inSym) <- Set.toAscList $ Map.keysSet stTransition])
136 } 267 }
137 where 268 where
138 setProduct :: forall a b. Set a -> Set b -> Set (a, b) 269 l :: Natural
139 setProduct as bs = Set.fromDistinctAscList $ (,) <$> Set.toAscList as <*> Set.toAscList bs 270 l = fromIntegral $ Seq.length out
140 filterTransition :: forall label. Eq label => ((state1, Maybe label), (state2, Maybe label)) -> Maybe ((state1, state2), Maybe label) 271 wordStates :: Set Natural
141 filterTransition ((st1, Nothing ), (st2, in2 )) = Just ((st1, st2), in2) 272 wordStates
142 filterTransition ((st1, in1 ), (st2, Nothing )) = Just ((st1, st2), in1) 273 | Seq.null out = Set.empty
143 filterTransition ((st1, Just in1), (st2, Just in2)) 274 | otherwise = Set.fromDistinctAscList [0..pred l]
144 | in1 == in2 = Just ((st1, st2), Just in1) 275 noProgress :: ((state, Maybe input), Set (state, Maybe output)) -> [(((Natural, state), Maybe input), Set ((Natural, state), Maybe output))]
145 | otherwise = Nothing 276 noProgress ((inSt, inSym), outs)
146 transitions :: ((state1, state2), Maybe input) -> Set ((state1, state2), Maybe output) 277 = [ (((wState, inSt), inSym), Set.mapMonotonic (\(outSt, Nothing) -> ((wState, outSt), Nothing)) noOutput) | wState <- Set.toList wordStates, not $ Set.null noOutput ]
147 transitions ((st1, st2), inS) = Set.fromList . mapMaybe filterTransition . Set.toAscList $ out1 `setProduct` out2
148 where 278 where
149 out1 = (fromMaybe Set.empty $ stTransition fst1 !? (st1, inS)) `Set.union` (fromMaybe Set.empty $ stTransition fst1 !? (st1, Nothing)) 279 noOutput = Set.filter (\(_, outSym) -> isNothing outSym) outs
150 out2 = (fromMaybe Set.empty $ stTransition fst2 !? (st2, inS)) `Set.union` (fromMaybe Set.empty $ stTransition fst2 !? (st2, Nothing)) 280 transitions :: ((Natural, state), Maybe input) -> Set ((Natural, state), Maybe output)
281 transitions ((l, inSt), inSym) = Set.fromDistinctAscList [ ((succ l, outSt), outSym) | (outSt, outSym@(Just _)) <- Set.toAscList $ stTransition ! (inSt, inSym), outSym == Seq.lookup (fromIntegral l) out ]
282\end{code}
283\end{comment}
151 284
285\begin{comment}
286\begin{code}
152restrictFST :: forall state input output. (Ord state, Ord input, Ord output) => Set state -> FST state input output -> FST state input output 287restrictFST :: forall state input output. (Ord state, Ord input, Ord output) => Set state -> FST state input output -> FST state input output
153-- ^ @restrictFST states fst@ removes from @fst@ all states not in @states@ including transitions leading to or originating from them 288-- ^ @restrictFST states fst@ removes from @fst@ all states not in @states@ including transitions leading to or originating from them
154restrictFST sts FST{..} = FST 289restrictFST sts FST{..} = FST
@@ -170,7 +305,7 @@ liveFST :: forall state input output. (Ord state, Ord input, Ord output, Show st
170liveFST fst@FST{..} = flip execState Set.empty $ mapM_ (depthSearch Set.empty) stInitial 305liveFST fst@FST{..} = flip execState Set.empty $ mapM_ (depthSearch Set.empty) stInitial
171 where 306 where
172 stTransition' :: Map state (Set state) 307 stTransition' :: Map state (Set state)
173 stTransition' = Map.map (Set.map $ \(st, _) -> st) $ Map.mapKeysWith Set.union (\(st, _) -> st) stTransition 308 stTransition' = Map.map (Set.map (\(st, _) -> st)) $ Map.mapKeysWith Set.union (\(st, _) -> st) stTransition
174 depthSearch :: Set state -> state -> State (Set state) () 309 depthSearch :: Set state -> state -> State (Set state) ()
175 depthSearch acc curr = do 310 depthSearch acc curr = do
176 let acc' = Set.insert curr acc 311 let acc' = Set.insert curr acc
@@ -181,3 +316,4 @@ liveFST fst@FST{..} = flip execState Set.empty $ mapM_ (depthSearch Set.empty) s
181 alreadyLive <- get 316 alreadyLive <- get
182 mapM_ (depthSearch acc') $ next `Set.difference` alreadyLive 317 mapM_ (depthSearch acc') $ next `Set.difference` alreadyLive
183\end{code} 318\end{code}
319\end{comment}
diff --git a/edit-lens/src/Control/Lens/Edit.lhs b/edit-lens/src/Control/Lens/Edit.lhs
index 5a60536..5a106c8 100644
--- a/edit-lens/src/Control/Lens/Edit.lhs
+++ b/edit-lens/src/Control/Lens/Edit.lhs
@@ -1,3 +1,4 @@
1\begin{comment}
1\begin{code} 2\begin{code}
2module Control.Lens.Edit 3module Control.Lens.Edit
3 ( Module(..) 4 ( Module(..)
@@ -8,9 +9,10 @@ module Control.Lens.Edit
8 9
9import Control.Edit 10import Control.Edit
10\end{code} 11\end{code}
12\end{comment}
11 13
12\begin{defn}[Zustandsbehaftete Monoidhomomorphismen] 14\begin{defn}[Zustandsbehaftete Monoidhomomorphismen]
13Mit einer Menge von Komplementen $C$ und Monoiden $M$ und $N$ nennen wir eine partielle Funktion $\psi \colon C \times M \to C \times N$ einen zustandsbehafteten Monoidhomomorphismus wenn sie den folgenden Ansprüchen genügt: 15Gegeben eine Menge von Komplementen $C$ und Monoiden $M$ und $N$ nennen wir eine partielle Funktion $\psi \colon C \times M \to C \times N$ einen zustandsbehafteten Monoidhomomorphismus wenn sie den folgenden Ansprüchen genügt:
14 16
15\begin{itemize} 17\begin{itemize}
16 \item $\forall c \in C \colon \psi(1_M, c) = (1_N, c)$ 18 \item $\forall c \in C \colon \psi(1_M, c) = (1_N, c)$
@@ -26,7 +28,7 @@ type StateMonoidHom s m n = (s, m) -> (s, n)
26\end{defn} 28\end{defn}
27 29
28\begin{defn}[edit-lenses] 30\begin{defn}[edit-lenses]
29Für Moduln $M$ und $N$ besteht eine symmetrische edit-lens zwischen $M$ und $N$ aus zwei zustandsbehafteten Monoidhomomorphismen $\Rrightarrow \colon C \times \partial M \to C \times \partial N$ und $\Lleftarrow \colon C \time \partial N \to C \times \partial M$, mit kompatiblem Komplement $C$, einem ausgezeichneten Element $\ground_C$ und einer \emph{Konsistenzrelation} $K \subset \Dom M \times C \times \Dom N$ sodass gilt: 31Für Moduln $M$ und $N$ besteht eine symmetrische edit-lens zwischen $M$ und $N$ aus zwei zustandsbehafteten Monoidhomomorphismen $\Rrightarrow \colon C \times \partial M \to C \times \partial N$ und $\Lleftarrow \colon C \times \partial N \to C \times \partial M$, mit kompatiblem Komplement $C$, einem ausgezeichneten Element $\ground_C$ und einer \emph{Konsistenzrelation} $K \subset \Dom M \times C \times \Dom N$ sodass gilt:
30 32
31\begin{itemize} 33\begin{itemize}
32 \item $(\init_M, \ground_C, \init_N) \in K$ 34 \item $(\init_M, \ground_C, \init_N) \in K$
@@ -41,7 +43,7 @@ Für Moduln $M$ und $N$ besteht eine symmetrische edit-lens zwischen $M$ und $N$
41 43
42Wir schreiben auch nur \emph{edit-lens} für den symmetrischen Fall\footnote{Für den asymmetrischen Fall siehe \cite{johnson2016unifying}}. 44Wir schreiben auch nur \emph{edit-lens} für den symmetrischen Fall\footnote{Für den asymmetrischen Fall siehe \cite{johnson2016unifying}}.
43 45
44In Haskell erwähnen wir die Konsistenzrelation nicht in der Erwartung, dass $\Rrightarrow$ und $\Lleftarrow$ nur auf konsistente Zustände angewandt werden (und somit auch entweder einen konsistenten Zustand erzeugen oder nichtt definiert sind): 46In Haskell erwähnen wir die Konsistenzrelation nicht in der Erwartung, dass $\Rrightarrow$ und $\Lleftarrow$ nur auf konsistente Zustände angewandt werden (und somit auch entweder einen konsistenten Zustand erzeugen oder nicht definiert sind):
45 47
46\begin{code} 48\begin{code}
47data EditLens c m n where 49data EditLens c m n where
@@ -74,7 +76,7 @@ Für Typen $n$ und $m$ ist eine \emph{lens} $\ell$ von $n$ in $m$ eine Abbildung
74 76
75$$ \forall f \, \text{Funktor} \colon \left ( \ell \colon \left ( m \to f(m) \right ) \to \left ( n \to f(n) \right ) \right )$$ 77$$ \forall f \, \text{Funktor} \colon \left ( \ell \colon \left ( m \to f(m) \right ) \to \left ( n \to f(n) \right ) \right )$$
76 78
77Durch geschickte Wahl des Funktors\footnote{\texttt{Const} bzw. \texttt{Identity}} $f$ können dann $\searrow \colon m \to n$ und $\nearrow \colon (m \to m) \to (n \to n)$ rekonstruiert werden oder verwandte Strukturen (folds, traversals, …) konstruiert werden. 79Durch geschickte Wahl des Funktors\footnote{\texttt{Const} bzw. \texttt{Identity}} $f$ können dann $\searrow \colon m \to n$ und $\nearrow \colon (m \to m) \to (n \to n)$ oder verwandte Strukturen (folds, traversals, …) konstruiert werden.
78\end{defn} 80\end{defn}
79 81
80Es liegt nun nahe $\nearrow \colon (m \to m) \to (n \to n)$ mit $\Rrightarrow \colon \partial m \to \partial n$ zu identifizieren. 82Es liegt nun nahe $\nearrow \colon (m \to m) \to (n \to n)$ mit $\Rrightarrow \colon \partial m \to \partial n$ zu identifizieren.