diff options
Diffstat (limited to 'edit-lens/src/Control')
-rw-r--r-- | edit-lens/src/Control/DFST.lhs | 78 | ||||
-rw-r--r-- | edit-lens/src/Control/DFST/Lens.lhs | 170 | ||||
-rw-r--r-- | edit-lens/src/Control/FST.lhs | 24 |
3 files changed, 272 insertions, 0 deletions
diff --git a/edit-lens/src/Control/DFST.lhs b/edit-lens/src/Control/DFST.lhs new file mode 100644 index 0000000..aec7bbb --- /dev/null +++ b/edit-lens/src/Control/DFST.lhs | |||
@@ -0,0 +1,78 @@ | |||
1 | \begin{code} | ||
2 | {-# LANGUAGE ScopedTypeVariables | ||
3 | #-} | ||
4 | |||
5 | {-| | ||
6 | Description: Deterministic finite state transducers | ||
7 | -} | ||
8 | module Control.DFST | ||
9 | ( DFST(..) | ||
10 | , runDFST, runDFST' | ||
11 | , toFST | ||
12 | ) where | ||
13 | |||
14 | import Data.Map.Strict (Map, (!?)) | ||
15 | import qualified Data.Map.Strict as Map | ||
16 | |||
17 | import Data.Set (Set) | ||
18 | import qualified Data.Set as Set | ||
19 | |||
20 | import Data.Sequence (Seq(..)) | ||
21 | import qualified Data.Sequence as Seq | ||
22 | |||
23 | import Data.Monoid | ||
24 | |||
25 | import Numeric.Natural | ||
26 | |||
27 | import Control.Monad | ||
28 | import Control.Monad.State | ||
29 | |||
30 | import Control.FST (FST(FST)) | ||
31 | import qualified Control.FST as FST | ||
32 | |||
33 | |||
34 | data DFST state input output = DFST | ||
35 | { stInitial :: state | ||
36 | , stTransition :: Map (state, input) (state, Seq output) | ||
37 | -- ^ All @(s, c)@-combinations not mapped are assumed to map to @(s, Nothing)@ | ||
38 | , stAccept :: Set state | ||
39 | } | ||
40 | |||
41 | |||
42 | toFST :: forall state input output. (Ord state, Ord input, Ord output) => DFST state input output -> FST (state, Natural) input output | ||
43 | -- ^ Split apart non-singleton outputs into a series of epsilon-transitions | ||
44 | -- | ||
45 | -- This function is currently invalid since multiple out-edges in the `DFST` visit the same intermediate states (we should label intermediate states not only with an ordinal but also with the input Symbol from the `DFST`) | ||
46 | toFST DFST{..} = flip execState initialFST $ forM_ (Map.toList stTransition) handleTransition | ||
47 | where | ||
48 | initialFST = FST | ||
49 | { stInitial = (stInitial, 0) | ||
50 | , stTransition = Map.empty | ||
51 | , stAccept = Set.map (,0) stAccept | ||
52 | } | ||
53 | addTransition :: forall state input output. (Ord state, Ord input, Ord output) => (state, Maybe input) -> (state, Maybe output) -> State (FST state input output) () | ||
54 | addTransition k v = modify $ \f@FST{ stTransition } -> f { FST.stTransition = Map.insertWith Set.union k (Set.singleton v) stTransition } | ||
55 | handleTransition :: ((state, input), (state, Seq output)) -> State (FST (state, Natural) input output) () | ||
56 | handleTransition ((st, inS), (st', outs)) = handleTransition' (st, 0) (Just inS) outs (st', 0) | ||
57 | handleTransition' :: (state, Natural) -> Maybe input -> Seq output -> (state, Natural) -> State (FST (state, Natural) input output) () | ||
58 | handleTransition' from inS Empty to = addTransition (from, inS) (to, Nothing) | ||
59 | handleTransition' from inS (outS :<| Empty) to = addTransition (from, inS) (to, Just outS) | ||
60 | handleTransition' from@(st, i) inS (outS :<| oo) to = addTransition (from, inS) ((st, succ i), Just outS) >> handleTransition' (st, succ i) Nothing oo to | ||
61 | |||
62 | runDFST :: forall state input output. (Ord state, Ord input) => DFST state input output -> Seq input -> Maybe (Seq output) | ||
63 | runDFST dfst@DFST{..} str = let (finalState, str') = runDFST' dfst stInitial str Seq.empty | ||
64 | in str' <$ guard (finalState `Set.member` stAccept) | ||
65 | |||
66 | runDFST' :: forall state input output. (Ord state, Ord input) | ||
67 | => DFST state input output | ||
68 | -> state -- ^ Current state | ||
69 | -> Seq input -- ^ Remaining input | ||
70 | -> Seq output -- ^ Accumulator containing previous output | ||
71 | -> (state, Seq output) -- ^ Next state, altered output | ||
72 | runDFST' _ st Empty acc = (st, acc) | ||
73 | runDFST' dfst@DFST{..} st (c :<| cs) acc | ||
74 | | Just (st', mc') <- stTransition !? (st, c) | ||
75 | = runDFST' dfst st' cs $ acc <> mc' | ||
76 | | otherwise | ||
77 | = runDFST' dfst st cs acc | ||
78 | \end{code} | ||
diff --git a/edit-lens/src/Control/DFST/Lens.lhs b/edit-lens/src/Control/DFST/Lens.lhs new file mode 100644 index 0000000..0976314 --- /dev/null +++ b/edit-lens/src/Control/DFST/Lens.lhs | |||
@@ -0,0 +1,170 @@ | |||
1 | \begin{code} | ||
2 | {-# LANGUAGE ScopedTypeVariables | ||
3 | , TemplateHaskell | ||
4 | #-} | ||
5 | |||
6 | module Control.DFST.Lens | ||
7 | ( StringEdit(..) | ||
8 | , StringEdits(..) | ||
9 | , insert, delete | ||
10 | , DFSTAction(..), DFSTComplement | ||
11 | , dfstLens | ||
12 | , module Control.DFST | ||
13 | , module Control.Lens.Edit | ||
14 | ) where | ||
15 | |||
16 | import Control.DFST | ||
17 | import Control.Lens.Edit | ||
18 | import Control.Lens | ||
19 | import Control.Lens.TH | ||
20 | import Control.Edit | ||
21 | |||
22 | import Numeric.Natural | ||
23 | import Data.Sequence (Seq((:<|), (:|>))) | ||
24 | import qualified Data.Sequence as Seq | ||
25 | |||
26 | import Data.Compositions.Snoc (Compositions) | ||
27 | import qualified Data.Compositions.Snoc as Comp | ||
28 | |||
29 | import Data.Algorithm.Diff (Diff, getDiff) | ||
30 | import qualified Data.Algorithm.Diff as Diff | ||
31 | |||
32 | import Data.Monoid | ||
33 | import Data.Function (on) | ||
34 | import Data.Foldable (toList) | ||
35 | |||
36 | |||
37 | data StringEdit char = Insert { _sePos :: Natural, _seInsertion :: char } | ||
38 | | Delete { _sePos :: Natural } | ||
39 | deriving (Eq, Ord, Show, Read) | ||
40 | |||
41 | makeLenses ''StringEdit | ||
42 | |||
43 | data StringEdits char = StringEdits (Seq (StringEdit char)) | ||
44 | | SEFail | ||
45 | deriving (Eq, Ord, Show, Read) | ||
46 | |||
47 | makePrisms ''StringEdits | ||
48 | |||
49 | stringEdits :: Traversal' (StringEdits char) (StringEdit char) | ||
50 | stringEdits = _StringEdits . traverse | ||
51 | |||
52 | insert :: Natural -> char -> StringEdits char | ||
53 | insert n c = StringEdits . Seq.singleton $ Insert n c | ||
54 | |||
55 | delete :: Natural -> StringEdits char | ||
56 | delete n = StringEdits . Seq.singleton $ Delete n | ||
57 | |||
58 | instance Monoid (StringEdits char) where | ||
59 | mempty = StringEdits Seq.empty | ||
60 | SEFail `mappend` _ = SEFail | ||
61 | _ `mappend` SEFail = SEFail | ||
62 | (StringEdits Seq.Empty) `mappend` x = x | ||
63 | x `mappend` (StringEdits Seq.Empty) = x | ||
64 | (StringEdits x@(bs :|> b)) `mappend` (StringEdits y@(a :<| as)) | ||
65 | | (Insert n _) <- a | ||
66 | , (Delete n') <- b | ||
67 | , n == n' | ||
68 | = StringEdits bs `mappend` StringEdits as | ||
69 | | otherwise = StringEdits $ x `mappend` y | ||
70 | |||
71 | instance Module (StringEdits char) where | ||
72 | type Domain (StringEdits char) = Seq char | ||
73 | apply str SEFail = Nothing | ||
74 | apply str (StringEdits Seq.Empty) = Just str | ||
75 | apply str (StringEdits (es :|> Insert n c)) = (flip apply) (StringEdits es) =<< go str n c | ||
76 | where | ||
77 | go Seq.Empty n c | ||
78 | | n == 0 = Just $ Seq.singleton c | ||
79 | | otherwise = Nothing | ||
80 | go str@(x :<| xs) n c | ||
81 | | n == 0 = Just $ c <| str | ||
82 | | otherwise = (x <|) <$> go xs (pred n) c | ||
83 | apply str (StringEdits (es :|> Delete n)) = (flip apply) (StringEdits es) =<< go str n | ||
84 | where | ||
85 | go Seq.Empty _ = Nothing | ||
86 | go (x :<| xs) n | ||
87 | | n == 0 = Just xs | ||
88 | | otherwise = (x <|) <$> go xs (pred n) | ||
89 | |||
90 | init = Seq.empty | ||
91 | divInit = StringEdits . Seq.unfoldl go . (0,) | ||
92 | where | ||
93 | go (_, Seq.Empty) = Nothing | ||
94 | go (n, (c :<| cs)) = Just ((succ n, cs), Insert n c) | ||
95 | |||
96 | \end{code} | ||
97 | |||
98 | % TODO Make notation mathy | ||
99 | |||
100 | Um zunächst eine asymmetrische edit-lens `StringEdits -> StringEdits` mit akzeptabler Komplexität für einen bestimmten `DFST s` (entlang der \emph{Richtung} des DFSTs) zu konstruieren möchten wir folgendes Verfahren anwenden: | ||
101 | |||
102 | Gegeben eine Sequenz (`StringEdits`) von zu übersetzenden Änderungen genügt es die Übersetzung eines einzelnen `StringEdit`s in eine womöglich längere Sequenz von `StringEdits` anzugeben, alle `StringEdits` aus der Sequenz zu übersetzen (hierbei muss auf die korrekte Handhabung des Komplements geachtet werden) und jene Übersetzungen dann zu concatenieren. | ||
103 | |||
104 | Wir definieren zunächst die \emph{Wirkung} eines DFST auf einen festen String als eine Abbildung `state -> (state, String)`, die den aktuellen Zustand vorm Parsen des Strings auf den Zustand danach und die (womöglich leere) Ausgabe schickt. | ||
105 | Diese Wirkungen bilden einen Monoiden analog zu Endomorphismen, wobei die Resultat-Strings concateniert werden. | ||
106 | |||
107 | Die Unterliegende Idee ist nun im Komplement der edit-lens eine Liste von Wirkungen (eine für jedes Zeichen der Eingabe des DFSTs) und einen Cache der monoidalen Summen aller kontinuirlichen Teillisten zu halten. | ||
108 | Da wir wissen welche Stelle im input-String von einem gegebenen edit betroffen ist können wir, anhand der Wirkung des Teilstücks bis zu jener Stelle, den output-String in einen durch den edit unveränderten Prefix und einen womöglich betroffenen Suffix unterteilen. | ||
109 | Die Wirkung ab der betroffenen Stelle im input-String können wir also Komposition der Wirkung der durch den edit betroffenen Stelle und derer aller Zeichen danach bestimmen. | ||
110 | Nun gilt es nur noch die Differenz (als `StringEdits`) des vorherigen Suffixes im output-String und des aus der gerade berechneten Wirkung Bestimmten zu bestimmen. | ||
111 | |||
112 | |||
113 | % Für die Rückrichtung bietet es sich an eine Art primitive Invertierung des DFSTs zu berechnen. | ||
114 | % Gegeben den aktuellen DFST $A$ möchten wir einen anderen $A^{-1}$ finden, sodass gilt: | ||
115 | |||
116 | % \begin{itemize} | ||
117 | % \item $A^{-1}$ akzeptiert einen String $s^{-1}$ (endet seinen Lauf in einem finalen Zustand) gdw. es einen String $s$ gibt, der unter $A$ die Ausgabe $s^{-1}$ produziert. | ||
118 | % \item Wenn $A^{-1}$ einen String $s^{-1}$ akzeptiert so produziert die resultierende Ausgabe $s$ unter $A$ die Ausgabe $s^{-1}$. | ||
119 | % \end{itemize} | ||
120 | |||
121 | % Kann nicht funktionieren, denn $A^{-1}$ ist notwendigerweise nondeterministisch. Wird $A^{-1}$ dann zu einem DFST forciert (durch arbiträre Wahl einer Transition pro Zustand) gehen Informationen verloren—$A^{-1}$ produziert nicht den minimale edit auf dem input string (in der Tat beliebig schlecht) für einen gegeben edit auf dem output string. | ||
122 | |||
123 | % Stelle im bisherigen Lauf isolieren, an der edit im output-string passieren soll, breitensuche auf pfaden, die sich von dieser stelle aus unterscheiden? | ||
124 | % Gegeben einen Pfad und eine markierte Transition, finde Liste aller Pfade aufsteigend sortiert nach Unterschied zu gegebenem Pfad, mit Unterschieden "nahe" der markierten Transition zuerst — zudem jeweils edit auf dem Eingabestring | ||
125 | % Einfacher ist Breitensuche ab `stInitial` und zunächst diff auf eingabe-strings. | ||
126 | |||
127 | \begin{code} | ||
128 | |||
129 | data DFSTAction state input output = DFSTAction { runDFSTAction :: state -> (state, Seq output) } | ||
130 | |||
131 | instance Monoid (DFSTAction state input output) where | ||
132 | mempty = DFSTAction $ \x -> (x, Seq.empty) | ||
133 | (DFSTAction f) `mappend` (DFSTAction g) = DFSTAction $ \s -> let ((f -> (s', out')), out) = g s in (s', out <> out') | ||
134 | |||
135 | type DFSTComplement state input output = Compositions (DFSTAction state input output) | ||
136 | |||
137 | dfstLens :: forall state input output. (Ord state, Ord input, Ord output) => DFST state input output -> EditLens (DFSTComplement state input output) (StringEdits input) (StringEdits output) | ||
138 | dfstLens dfst@DFST{..} = EditLens ground propR propL | ||
139 | where | ||
140 | ground :: DFSTComplement state input output | ||
141 | ground = Comp.fromList [] | ||
142 | |||
143 | propR :: (DFSTComplement state input output, StringEdits input) -> (DFSTComplement state input output, StringEdits output) | ||
144 | propR (c, SEFail) = (c, SEFail) | ||
145 | propR (c, StringEdits (es :|> e)) = (c', es' <> es'') | ||
146 | where | ||
147 | (cSuffix, cPrefix) = Comp.splitAt (Comp.length c - (e ^. sePos . from enum)) c | ||
148 | cSuffix' | ||
149 | | Delete _ <- e = Comp.take (pred $ Comp.length cSuffix) cSuffix -- TODO unsafe | ||
150 | | Insert _ nChar <- e = cSuffix <> Comp.singleton (DFSTAction $ \x -> runDFST' dfst x (pure nChar) Seq.empty) | ||
151 | (pState, pOutput) = runDFSTAction (Comp.composed cPrefix) stInitial | ||
152 | (_, sOutput ) = runDFSTAction (Comp.composed cSuffix ) pState | ||
153 | (_, sOutput') = runDFSTAction (Comp.composed cSuffix') pState | ||
154 | (c', es') = propR (cSuffix' <> cPrefix, StringEdits es) | ||
155 | es'' = strDiff sOutput sOutput' & stringEdits . sePos . from enum +~ Seq.length pOutput | ||
156 | propR (c, StringEdits Seq.Empty) = (c, mempty) | ||
157 | |||
158 | |||
159 | propL :: (DFSTComplement state input output, StringEdits output) -> (DFSTComplement state input output, StringEdits input) | ||
160 | propL = undefined | ||
161 | |||
162 | strDiff :: forall sym. Eq sym => Seq sym -> Seq sym -> StringEdits sym | ||
163 | -- ^ @strDiff a b@ calculates a set of edits, which, when applied to @a@, produce @b@ | ||
164 | strDiff a b = snd . foldr toEdit (0, mempty) $ (getDiff `on` toList) a b | ||
165 | where | ||
166 | toEdit :: Diff sym -> (Natural, StringEdits sym) -> (Natural, StringEdits sym) | ||
167 | toEdit (Diff.Both _ _) (n, es) = (succ n, es) | ||
168 | toEdit (Diff.First _ ) (n, es) = (succ n, delete n <> es) | ||
169 | toEdit (Diff.Second c) (n, es) = (succ (succ n), insert n c <> es) | ||
170 | \end{code} | ||
diff --git a/edit-lens/src/Control/FST.lhs b/edit-lens/src/Control/FST.lhs new file mode 100644 index 0000000..d3c8ca9 --- /dev/null +++ b/edit-lens/src/Control/FST.lhs | |||
@@ -0,0 +1,24 @@ | |||
1 | \begin{code} | ||
2 | |||
3 | {-| | ||
4 | Description: Finite state transducers with epsilon-transitions | ||
5 | -} | ||
6 | module Control.FST | ||
7 | ( FST(..) | ||
8 | ) where | ||
9 | |||
10 | import Data.Map.Strict (Map) | ||
11 | import qualified Data.Map.Strict as Map | ||
12 | |||
13 | import Data.Set (Set) | ||
14 | |||
15 | import Data.Sequence (Seq) | ||
16 | |||
17 | import Control.Lens.TH | ||
18 | |||
19 | data FST state input output = FST | ||
20 | { stInitial :: state | ||
21 | , stTransition :: Map (state, Maybe input) (Set (state, Maybe output)) | ||
22 | , stAccept :: Set state | ||
23 | } | ||
24 | \end{code} | ||