summaryrefslogtreecommitdiff
path: root/edit-lens/src/Control/FST.lhs
diff options
context:
space:
mode:
Diffstat (limited to 'edit-lens/src/Control/FST.lhs')
-rw-r--r--edit-lens/src/Control/FST.lhs270
1 files changed, 203 insertions, 67 deletions
diff --git a/edit-lens/src/Control/FST.lhs b/edit-lens/src/Control/FST.lhs
index 9298e11..9aa5341 100644
--- a/edit-lens/src/Control/FST.lhs
+++ b/edit-lens/src/Control/FST.lhs
@@ -1,3 +1,4 @@
1\begin{comment}
1\begin{code} 2\begin{code}
2{-# LANGUAGE ScopedTypeVariables 3{-# LANGUAGE ScopedTypeVariables
3#-} 4#-}
@@ -7,16 +8,18 @@ Description: Finite state transducers with epsilon-transitions
7-} 8-}
8module Control.FST 9module Control.FST
9 ( FST(..) 10 ( FST(..)
11 -- * Using FSTs
12 , runFST, runFST', step
10 -- * Constructing FSTs 13 -- * Constructing FSTs
11 , wordFST 14 , wordFST
12 -- * Operations on FSTs 15 -- * Operations on FSTs
13 , productFST, restrictFST 16 , productFST, restrictOutput, restrictFST
14 -- * Debugging Utilities 17 -- * Debugging Utilities
15 , liveFST 18 , liveFST
16 ) where 19 ) where
17 20
18import Data.Map.Strict (Map, (!?)) 21import Data.Map.Lazy (Map, (!?), (!))
19import qualified Data.Map.Strict as Map 22import qualified Data.Map.Lazy as Map
20 23
21import Data.Set (Set) 24import Data.Set (Set)
22import qualified Data.Set as Set 25import qualified Data.Set as Set
@@ -24,7 +27,7 @@ import qualified Data.Set as Set
24import Data.Sequence (Seq) 27import Data.Sequence (Seq)
25import qualified Data.Sequence as Seq 28import qualified Data.Sequence as Seq
26 29
27import Data.Maybe (mapMaybe, fromMaybe, isJust, fromJust) 30import Data.Maybe (mapMaybe, fromMaybe, isJust, fromJust, isNothing)
28 31
29import Numeric.Natural 32import Numeric.Natural
30 33
@@ -35,12 +38,28 @@ import Control.Monad.State.Strict
35import Text.PrettyPrint.Leijen (Pretty(..)) 38import Text.PrettyPrint.Leijen (Pretty(..))
36import qualified Text.PrettyPrint.Leijen as PP 39import qualified Text.PrettyPrint.Leijen as PP
37 40
38data FST state input output = FST 41\end{code}
42\end{comment}
43
44\begin{defn}[Finite state transducers]
45Unter einem finite state transducer verstehen wir ein 6-Tupel $(\Sigma, \Delta, Q, I, F, E)$ mit $\Sigma$ dem endlichen Eingabe-Alphabet, $\Delta$ dem endlichen Ausgabe-Alphabet, $Q$ einer endlichen Menge an Zuständen, $I \subset Q$ der Menge von initialen Zuständen, $F \subset Q$ der Menge von akzeptierenden Endzuständen, und $E \subset Q \times (\Sigma \cup \{ \epsilon \}) \times (\Delta \cup \{ \epsilon \}) \times Q$ der Transitionsrelation.
46
47Semantisch ist ein finite state transducer ein endlicher Automat erweitert um die Fähigkeit bei Zustandsübergängen ein Symbol aus seinem Ausgabe-Alphabet an ein Ausgabe-Wort anzuhängen.
48
49In Haskell lockern wir die Anforderung, dass die Ein- und Ausgabe-Alphabete endlich sein müssen und annotieren sie nur im Typsystem.
50Zudem speichern wir die Transitionsrelation als multimap um effiziente lookups von Zustand-Eingabe-Paaren zu ermöglichen.
51
52\begin{code}
53dFSeata FST state input output = FST
39 { stInitial :: Set state 54 { stInitial :: Set state
40 , stTransition :: Map (state, Maybe input) (Set (state, Maybe output)) 55 , stTransition :: Map (state, Maybe input) (Set (state, Maybe output))
41 , stAccept :: Set state 56 , stAccept :: Set state
42 } deriving (Show, Read) 57 } deriving (Show, Read)
58\end{code}
59\end{defn}
43 60
61\begin{comment}
62\begin{code}
44instance (Show state, Show input, Show output) => Pretty (FST state input output) where 63instance (Show state, Show input, Show output) => Pretty (FST state input output) where
45 pretty FST{..} = PP.vsep 64 pretty FST{..} = PP.vsep
46 [ PP.text "Initial states:" PP.</> PP.hang 2 (list . map (PP.text . show) $ Set.toAscList stInitial) 65 [ PP.text "Initial states:" PP.</> PP.hang 2 (list . map (PP.text . show) $ Set.toAscList stInitial)
@@ -55,62 +74,164 @@ instance (Show state, Show input, Show output) => Pretty (FST state input output
55 ] 74 ]
56 where 75 where
57 label :: Show a => Maybe a -> PP.Doc 76 label :: Show a => Maybe a -> PP.Doc
58 label = maybe (PP.text "ɛ") (PP.text . show) 77 label = PP.text . maybe "ɛ" show
59 list :: [PP.Doc] -> PP.Doc 78 list :: [PP.Doc] -> PP.Doc
60 list = PP.encloseSep (PP.lbracket PP.<> PP.space) (PP.space PP.<> PP.rbracket) (PP.comma PP.<> PP.space) 79 list = PP.encloseSep (PP.lbracket PP.<> PP.space) (PP.space PP.<> PP.rbracket) (PP.comma PP.<> PP.space)
80\end{code}
81\end{comment}
61 82
62runFST :: forall input output state. (Ord input, Ord output, Ord state) => FST state input output -> Seq input -> [Seq output] 83Wir definieren die Auswertung von finite state transducers induktiv indem wir zunächst angeben wie ein einzelner Auswertungs-Schritt erfolgt.
63runFST = fmap (map $ catMaybes . fmap (view _2) . view _2) . runFST' 84
64 where 85Hierzu kommentieren wir die Haskell-Implementierung eines Auswertungs-Schritts.
65 catMaybes = fmap fromJust . Seq.filter isJust 86Notwendigerweise ist die Auswertung eines FSTs nicht deterministisch, wir produzieren daher eine Liste von möglichen Resultaten in keiner besonderen Reihenfolge.
87
88\begin{code}
89step :: forall input output state. (Ord input, Ord output, Ord state)
90 => FST state input output
91 -> Maybe state -- ^ Current state
92 -> Maybe input -- ^ Head of remaining input
93 -> [(Maybe input, state, Maybe output)] -- ^ Tuples of unconsumed input, next state, and produced output
94step FST{..} Nothing inS = (\s -> (inS, s, Nothing)) <$> Set.toList stInitial
95\end{code}
96Ist kein vorheriger Schritt erfolgt so wählen wir einen initialen Zustand, konsumieren keine Eingabe, und produzieren keine Ausgabe.
97
98\begin{code}
99step FST{..} (Just c) inS = let
100 consuming = fromMaybe Set.empty $ Map.lookup (c, inS) stTransition
101 unconsuming = fromMaybe Set.empty $ Map.lookup (c, Nothing) stTransition
102 in Set.toList $ Set.map (\(n, mOut) -> (Nothing, n, mOut)) consuming `Set.union` Set.map (\(n, mOut) -> (inS, n, mOut)) unconsuming
103\end{code}
104Ansonsten wählen wir einen Eintrag aus der Transitionstabelle für den aktuellen Zustand, der entweder keine oder die gegebene Eingabe konsumiert.
105Im Ergebnis geben wir den nächsten Zustand, die Ausgabe aus der Transitionstabelle, und ob die Eingabe konsumiert wurde an.
66 106
107\begin{code}
67runFST' :: forall input output state. (Ord input, Ord output, Ord state) 108runFST' :: forall input output state. (Ord input, Ord output, Ord state)
68 => FST state input output 109 => FST state input output
69 -> Seq input 110 -> Seq input
70 -> [(state, Seq (state, Maybe output))] -- ^ Tuples of initial state and chosen transitions; not neccessarily finite 111 -> [(state, Seq (state, Maybe output))] -- ^ Tuples of initial state and chosen transitions; not neccessarily finite
71-- ^ Compute all possible runs on the given input 112-- ^ Compute all possible runs on the given input
72runFST' fst Seq.Empty = guardAccept $ (\(_, st, _) -> (st, Seq.Empty)) <$> step fst Nothing Nothing 113runFST' fst@FST{..} cs = do
73runFST' fst cs = guardAccept $ do 114 initial <- view _2 <$> step fst Nothing Nothing -- Nondeterministically choose an initial state
74 initial <- view _2 <$> step fst Nothing Nothing 115 go (initial, Seq.Empty) cs -- Recursively extend the run consisting of only the initial state
75 go (initial, Seq.Empty) cs
76 where 116 where
77 guardAccept res = do
78 (initial, path) <- res
79 let
80 finalState
81 | (_ :> (st, _)) <- path = st
82 | otherwise = initial
83 guard $ finalState `Set.member` stAccept
84 return res
85
86 go :: (state, Seq (state, Maybe output)) -> Seq input-> [(state, Seq (state, Maybe output))] 117 go :: (state, Seq (state, Maybe output)) -> Seq input-> [(state, Seq (state, Maybe output))]
118 -- ^ Uses `step` on last state of run and nondeterministically chooses between alternatives given
119\end{code}
120
121Um alle möglichen Läufe auf einer gegebenen Eingabe zu berechnen wenden wir
122rekursiv \texttt{step} auf den letzten Zustand des Laufs (und der verbleibenden
123Eingabe) an bis keine Eingabe verbleibt und der letzte Zustand in der Menge der
124akzeptierenden Endzustände liegt.
125
126\begin{comment}
127\begin{code}
87 go (initial, path) cs = do 128 go (initial, path) cs = do
88 let 129 let
130 -- | Determine last state of the run
89 current 131 current
90 | (_ :> (st, _)) <- path = st 132 | (_ :> (st, _)) <- path = st
91 | otherwise = initial 133 | otherwise = initial
92 (head, next, out) <- step fst (Just current) (Seq.lookup 0 cs) 134 case step fst (Just current) (Seq.lookup 0 cs) of
93 let 135 [] -> do
94 nPath = path :> (next, out) 136 guard $ current `Set.member` stAccept && Seq.null cs
95 ncs = maybe id (:<) head cs 137 return (initial, path)
96 go (initial, nPath) ncs 138 xs -> do
97 139 (head, next, out) <- xs
140 let
141 nPath = path :> (next, out)
142 ncs
143 | (_ :< cs') <- cs = maybe id (:<) head cs'
144 | otherwise = Seq.Empty
145 go (initial, nPath) ncs
146\end{code}
147\end{comment}
148
149Es ist gelegentlich nützlich nur die möglichen Ausgaben eines FST auf gegebener
150Eingabe zu bestimmen, wir führen eine Hilfsfunktion auf Basis von
151{\ttfamily runFST'} ein:
152
153\begin{code}
154runFST :: forall input output state. (Ord input, Ord output, Ord state) => FST state input output -> Seq input -> [Seq output]
155-- ^ Compute all possible runs on the given input and return only their output
156\end{code}
157\begin{comment}
158\begin{code}
159runFST = fmap (map $ catMaybes . fmap (view _2) . view _2) . runFST'
160 where
161 catMaybes = fmap fromJust . Seq.filter isJust
162\end{code}
163\end{comment}
164
165Wir können das Produkt zweier FSTs definieren.
166Intuitiv wollen wir beide FSTs gleichzeitig ausführen und dabei sicherstellen, dass Ein- und Ausgabe der FSTs übereinstimmen\footnote{Da wir $\epsilon$-Transitionen in FSTs erlauben müssen wir uns festlegen wann eine $\epsilon$-Transition übereinstimmt mit einer anderen Transition. Wir definieren, dass $\epsilon$ als Eingabe mit jeder anderen Eingabe (inkl. einem weiteren $\epsilon$) übereinstimmt.}.
167
168Hierfür berechnen wir das Graphen-Produkt der FSTs:
169
170\begin{defn}[FST-Produkt]
171 Gegeben zwei finite state transducer $T = (\Sigma, \Delta, Q, I, F, E)$ und $T^\prime = (\Sigma^\prime, \Delta^\prime, Q^\prime, I^\prime, F^\prime, E^\prime)$ nennen wir $T^\times = (\Sigma^\times, \Delta^\times, Q^\times, I^\times, F^\times, E^\times)$ das Produkt $T^\times = T \times T^\prime$ von $T$ und $T^\prime$.
172
173 $T^\times$ bestimmt sich als das Graphenprodukt der beiden, die FSTs unterliegenden Graphen, wobei wir die Zustandsübergänge als Kanten mit Gewichten aus dem Boolschen Semiring auffassen:
174
175 \begin{align*}
176 \Sigma^\times & = \Sigma \cap \Sigma^\prime \\
177 \Delta^\times & = \Delta \cap \Delta^\prime \\
178 Q^\times & = Q \times Q^\prime \\
179 I^\times & = I \times I^\prime \\
180 F^\times & = F \times F^\prime \\
181 E^\times & \subset Q^\times \times (\Sigma^\times \cup \{ \epsilon \}) \times (\Delta^\times \cup \{ \epsilon \}) \times Q^\times \\
182 & = \left \{ ((q, q^\prime), \sigma, \delta, (\bar{q}, \bar{q^\prime})) \colon (q, \sigma, \delta, \bar{q}) \in E, (q^\prime, \sigma^\prime, \delta^\prime, \bar{q^\prime}) \in E^\prime, \sigma = \sigma^\prime, \delta = \delta^\prime \right \}
183 \end{align*}
184\end{defn}
98 185
99step :: forall input output state. (Ord input, Ord output, Ord state)
100 => FST state input output
101 -> Maybe state -- ^ Current state
102 -> Maybe input -- ^ Head of remaining input
103 -> [(Maybe input, state, Maybe output)] -- ^ Tuples of unconsumed input, next state, and produced output
104step FST{..} Nothing inS = (\s -> (inS, s, Nothing)) <$> Set.toList stInitial
105step FST{..} (Just c) inS = let
106 consuming = fromMaybe Set.empty $ Map.lookup (c, inS) stTransition
107 unconsuming = fromMaybe Set.empty $ Map.lookup (c, Nothing) stTransition
108 in Set.toList $ Set.map (\(n, mOut) -> (Nothing, n, mOut)) consuming `Set.union` Set.map (\(n, mOut) -> (inS, n, mOut)) unconsuming
109 186
187\begin{code}
188productFST :: forall state1 state2 input output. (Ord state1, Ord state2, Ord input, Ord output) => FST state1 input output -> FST state2 input output -> FST (state1, state2) input output
189-- ^ Cartesian product on states, logical conjunction on transitions and state-properties (initial and accept)
190--
191-- This is the "natural" (that is component-wise) product when considering FSTs to be weighted in the boolean semiring.
192--
193-- Intuitively this corresponds to running both FSTs at the same time requiring them to produce the same output and agree on their input.
194\end{code}
110 195
111wordFST :: forall input output. Seq output -> FST Natural input output 196\begin{comment}
112-- ^ @wordFST str@ is the linear FST generating @str@ as output when given no input 197\begin{code}
113wordFST outs = FST 198productFST fst1 fst2 = FST
199 { stInitial = Set.fromDistinctAscList $ stInitial fst1 `setProductList` stInitial fst2
200 , stAccept = Set.fromDistinctAscList $ stAccept fst1 `setProductList` stAccept fst2
201 , stTransition = Map.fromSet transitions . Set.fromDistinctAscList . mapMaybe filterTransition $ Map.keysSet (stTransition fst1) `setProductList` Map.keysSet (stTransition fst2)
202 }
203 where
204 setProductList :: forall a b. Set a -> Set b -> [(a, b)]
205 setProductList as bs = (,) <$> Set.toAscList as <*> Set.toAscList bs
206 filterTransition :: forall label. Eq label => ((state1, Maybe label), (state2, Maybe label)) -> Maybe ((state1, state2), Maybe label)
207 filterTransition ((st1, l1), (st2, l2))
208 | l1 == l2 = Just ((st1, st2), l1)
209 | otherwise = Nothing
210 transitions :: ((state1, state2), Maybe input) -> Set ((state1, state2), Maybe output)
211 transitions ((st1, st2), inS) = Set.fromDistinctAscList . mapMaybe filterTransition $ out1 `setProductList` out2
212 where
213 out1 = fromMaybe Set.empty (stTransition fst1 !? (st1, inS)) `Set.union` fromMaybe Set.empty (stTransition fst1 !? (st1, Nothing))
214 out2 = fromMaybe Set.empty (stTransition fst2 !? (st2, inS)) `Set.union` fromMaybe Set.empty (stTransition fst2 !? (st2, Nothing))
215\end{code}
216\end{comment}
217
218Es ist später erforderlich einen FST derart einzuschränken, dass er eine gegebene Ausgabe produziert.
219
220Hierzu nehmen wir das FST-Produkt mit einem FST, der, ungeachtet der Eingabe, immer die gegebene Ausgabe produziert.
221Da die Ausgaben der beiden FSTs übereinstimmen müssen produziert das Produkt mit einem derartigen FST (solange dessen Ausgabe in keinem Sinne von der Eingabe abhängt) die gewünschte Ausgabe.
222
223Zur Konstruktion eines derartigen \emph{Wort-FST}s nehmen wir Indizes im Ausgabe-Wort (natürliche Zahlen) als Zustände.
224Übergänge sind immer entweder der Form $n \rightarrow \text{succ}(n)$, konsumieren keine Eingabe ($\epsilon$) und produzieren als Ausgabe das Zeichen am Index $n$ im Ausgabe-Wort, oder der Form $n \overset{(i, \epsilon)}{\rightarrow} n$, für jedes Eingabesymbol $i$ (um die Unabhängigkeit von der Eingabe sicherzustellen).
225Weiter ist $0$ initial und $\text{length}(\text{Ausgabe})$ der einzige akzeptierende Endzustand.
226
227\begin{code}
228wordFST :: forall input output. (Ord input, Ord output) => Set input -> Seq output -> FST Natural input output
229-- ^ @wordFST inps str@ is the linear FST generating @str@ as output when given any input with symbols in @inps@
230\end{code}
231
232\begin{comment}
233\begin{code}
234wordFST inps outs = FST
114 { stInitial = Set.singleton 0 235 { stInitial = Set.singleton 0
115 , stAccept = Set.singleton l 236 , stAccept = Set.singleton l
116 , stTransition = Map.fromSet next states 237 , stTransition = Map.fromSet next states
@@ -119,36 +240,50 @@ wordFST outs = FST
119 l :: Natural 240 l :: Natural
120 l = fromIntegral $ Seq.length outs 241 l = fromIntegral $ Seq.length outs
121 states :: Set (Natural, Maybe input) 242 states :: Set (Natural, Maybe input)
122 states = Set.fromDistinctAscList [ (n, Nothing) | n <- [0..pred l] ] 243 states
244 | Seq.null outs = Set.empty
245 | otherwise = Set.fromDistinctAscList [ (n, inp) | n <- [0..pred l], inp <- Nothing : map Just (Set.toList inps) ]
123 next :: (Natural, Maybe input) -> Set (Natural, Maybe output) 246 next :: (Natural, Maybe input) -> Set (Natural, Maybe output)
124 next (i, _) = Set.singleton (succ i, Just . Seq.index outs $ fromIntegral i) 247 next (i, _) = Set.fromList
248 [ (succ i, Just . Seq.index outs $ fromIntegral i)
249 , (i, Nothing)
250 ]
251\end{code}
252\end{comment}
125 253
126productFST :: forall state1 state2 input output. (Ord state1, Ord state2, Ord input, Ord output) => FST state1 input output -> FST state2 input output -> FST (state1, state2) input output 254Da \texttt{wordFST} zur Konstruktion eine komprehensive Menge aller Eingabesymbole benötigt verwenden wir im folgenden eine optimierte Variante des Produkts mit einem Wort-FST.
127-- ^ Cartesian product on states, logical conjunction on transitions and state-properties (initial and accept) 255
128-- 256\begin{code}
129-- This is the "natural" (that is component-wise) product when considering FSTs to be weighted in the boolean semiring. 257restrictOutput :: forall state input output. (Ord state, Ord input, Ord output) => Seq output -> FST state input output -> FST (Natural, state) input output
130-- 258-- ^ @restrictOutput out@ is equivalent to @productFST (wordFST inps out)@ where @inps@ is a comprehensive set of all input symbols @inp :: input@
131-- Intuitively this corresponds to running both FSTs at the same time requiring them to produce the same output and "agree" (epsilon agreeing with every character) on their input. 259\end{code}
132productFST fst1 fst2 = FST 260
133 { stInitial = stInitial fst1 `setProduct` stInitial fst2 261\begin{comment}
134 , stAccept = stAccept fst1 `setProduct` stAccept fst2 262\begin{code}
135 , stTransition = Map.fromSet transitions . Set.fromList . mapMaybe filterTransition . Set.toAscList $ Map.keysSet (stTransition fst1) `setProduct` Map.keysSet (stTransition fst2) 263restrictOutput out FST{..} = FST
264 { stInitial = Set.mapMonotonic (0,) stInitial
265 , stAccept = Set.mapMonotonic (l,) stAccept
266 , stTransition = Map.filter (not . Set.null) $ Map.fromList (concatMap noProgress $ Map.toList stTransition) `Map.union` Map.fromSet transitions (Set.fromDistinctAscList [((wSt, inSt), inSym) | wSt <- Set.toAscList wordStates, (inSt, inSym) <- Set.toAscList $ Map.keysSet stTransition])
136 } 267 }
137 where 268 where
138 setProduct :: forall a b. Set a -> Set b -> Set (a, b) 269 l :: Natural
139 setProduct as bs = Set.fromDistinctAscList $ (,) <$> Set.toAscList as <*> Set.toAscList bs 270 l = fromIntegral $ Seq.length out
140 filterTransition :: forall label. Eq label => ((state1, Maybe label), (state2, Maybe label)) -> Maybe ((state1, state2), Maybe label) 271 wordStates :: Set Natural
141 filterTransition ((st1, Nothing ), (st2, in2 )) = Just ((st1, st2), in2) 272 wordStates
142 filterTransition ((st1, in1 ), (st2, Nothing )) = Just ((st1, st2), in1) 273 | Seq.null out = Set.empty
143 filterTransition ((st1, Just in1), (st2, Just in2)) 274 | otherwise = Set.fromDistinctAscList [0..pred l]
144 | in1 == in2 = Just ((st1, st2), Just in1) 275 noProgress :: ((state, Maybe input), Set (state, Maybe output)) -> [(((Natural, state), Maybe input), Set ((Natural, state), Maybe output))]
145 | otherwise = Nothing 276 noProgress ((inSt, inSym), outs)
146 transitions :: ((state1, state2), Maybe input) -> Set ((state1, state2), Maybe output) 277 = [ (((wState, inSt), inSym), Set.mapMonotonic (\(outSt, Nothing) -> ((wState, outSt), Nothing)) noOutput) | wState <- Set.toList wordStates, not $ Set.null noOutput ]
147 transitions ((st1, st2), inS) = Set.fromList . mapMaybe filterTransition . Set.toAscList $ out1 `setProduct` out2
148 where 278 where
149 out1 = (fromMaybe Set.empty $ stTransition fst1 !? (st1, inS)) `Set.union` (fromMaybe Set.empty $ stTransition fst1 !? (st1, Nothing)) 279 noOutput = Set.filter (\(_, outSym) -> isNothing outSym) outs
150 out2 = (fromMaybe Set.empty $ stTransition fst2 !? (st2, inS)) `Set.union` (fromMaybe Set.empty $ stTransition fst2 !? (st2, Nothing)) 280 transitions :: ((Natural, state), Maybe input) -> Set ((Natural, state), Maybe output)
281 transitions ((l, inSt), inSym) = Set.fromDistinctAscList [ ((succ l, outSt), outSym) | (outSt, outSym@(Just _)) <- Set.toAscList $ stTransition ! (inSt, inSym), outSym == Seq.lookup (fromIntegral l) out ]
282\end{code}
283\end{comment}
151 284
285\begin{comment}
286\begin{code}
152restrictFST :: forall state input output. (Ord state, Ord input, Ord output) => Set state -> FST state input output -> FST state input output 287restrictFST :: forall state input output. (Ord state, Ord input, Ord output) => Set state -> FST state input output -> FST state input output
153-- ^ @restrictFST states fst@ removes from @fst@ all states not in @states@ including transitions leading to or originating from them 288-- ^ @restrictFST states fst@ removes from @fst@ all states not in @states@ including transitions leading to or originating from them
154restrictFST sts FST{..} = FST 289restrictFST sts FST{..} = FST
@@ -170,7 +305,7 @@ liveFST :: forall state input output. (Ord state, Ord input, Ord output, Show st
170liveFST fst@FST{..} = flip execState Set.empty $ mapM_ (depthSearch Set.empty) stInitial 305liveFST fst@FST{..} = flip execState Set.empty $ mapM_ (depthSearch Set.empty) stInitial
171 where 306 where
172 stTransition' :: Map state (Set state) 307 stTransition' :: Map state (Set state)
173 stTransition' = Map.map (Set.map $ \(st, _) -> st) $ Map.mapKeysWith Set.union (\(st, _) -> st) stTransition 308 stTransition' = Map.map (Set.map (\(st, _) -> st)) $ Map.mapKeysWith Set.union (\(st, _) -> st) stTransition
174 depthSearch :: Set state -> state -> State (Set state) () 309 depthSearch :: Set state -> state -> State (Set state) ()
175 depthSearch acc curr = do 310 depthSearch acc curr = do
176 let acc' = Set.insert curr acc 311 let acc' = Set.insert curr acc
@@ -181,3 +316,4 @@ liveFST fst@FST{..} = flip execState Set.empty $ mapM_ (depthSearch Set.empty) s
181 alreadyLive <- get 316 alreadyLive <- get
182 mapM_ (depthSearch acc') $ next `Set.difference` alreadyLive 317 mapM_ (depthSearch acc') $ next `Set.difference` alreadyLive
183\end{code} 318\end{code}
319\end{comment}