diff options
Diffstat (limited to 'edit-lens/src/Control/Edit.lhs')
-rw-r--r-- | edit-lens/src/Control/Edit.lhs | 71 |
1 files changed, 71 insertions, 0 deletions
diff --git a/edit-lens/src/Control/Edit.lhs b/edit-lens/src/Control/Edit.lhs new file mode 100644 index 0000000..7be8db4 --- /dev/null +++ b/edit-lens/src/Control/Edit.lhs | |||
@@ -0,0 +1,71 @@ | |||
1 | \begin{comment} | ||
2 | \begin{code} | ||
3 | module Control.Edit | ||
4 | ( Module(..) | ||
5 | ) where | ||
6 | \end{code} | ||
7 | \end{comment} | ||
8 | |||
9 | \begin{defn}[Moduln] | ||
10 | Ein Modul $M$ ist eine \emph{partielle Monoidwirkung} zusammen mit einem schwach-initialen Element\footnote{Gemeint ist hier die übliche Definition von \emph{schwach-initial} aus der Kategorientheorie—ein Modul $M$ bildet eine Kategorie mit Objekten aus $\Dom M$ und Morphismen von $x$ nach $y$ den Monoidelementen $\partial x \in \partial M$ sodass $x \cdot \partial x = y$} (bzgl. der Monoidwirkung) auf dem Träger, d.h. $M = (\Dom M, \partial M, \init_M)$ ist ein Tupel aus einer Trägermenge $\Dom M$, einem Monoid $\partial M$ zusammen mit mit einer partiellen Funktion $\cdot \colon \Dom M \times \partial M \to \Dom$, die \emph{kompatibel} ist mit der Monoid-Struktur: | ||
11 | |||
12 | \begin{itemize} | ||
13 | \item $\forall m \in \Dom M \colon m \cdot 1_{\partial M} = m$ | ||
14 | \item $\forall m \in \Dom M, (e, e^\prime) \in (\partial M)^2 \colon m \cdot (e e^\prime) = (m \cdot e) \cdot e^\prime$ | ||
15 | \end{itemize} | ||
16 | |||
17 | und einem Element $\init_M \in \Dom M$, sodass gilt: | ||
18 | |||
19 | $$ \forall m \in \Dom M \ \exists \partial m \in \partial M \colon m = \init_M \cdot \partial m$$ | ||
20 | |||
21 | Wir führen außerdem eine Abbildung $(\init_M \cdot)^{-1} \colon \Dom M \to \partial m$ ein, die ein $m$ auf ein arbiträr gewähltes $\partial m$ abbildet für das $\init_M \cdot \partial m = m$ gilt. | ||
22 | |||
23 | In Haskell charakterisieren wir Moduln über ihren Monoid, d.h. die Wahl des Monoiden \texttt{m} legt den Träger \texttt{Domain m}, die Wirkung \texttt{apply}, das initiale Element \texttt{init} und $(\init_M \cdot)^{-1}$ eindeutig fest\footnote{Betrachten wir mehrere Moduln über dem selben Träger (oder mit verschiedenen Wirkungen) führen wir neue, isomorphe, Typen ein (\texttt{newtype}-Wrappern)}. | ||
24 | Eine Repräsentierung als Typklasse bietet sich an: | ||
25 | |||
26 | \begin{code} | ||
27 | class Monoid m => Module m where | ||
28 | type Domain m :: * | ||
29 | apply :: Domain m -> m -> Maybe (Domain m) | ||
30 | -- ^ A partial monoid-action of `m` on `Domain m` | ||
31 | -- | ||
32 | -- prop> m `apply` mempty = m | ||
33 | -- prop> m `apply` (e `mappend` e') = (m `apply` e) `apply` e' | ||
34 | init :: Domain m | ||
35 | -- ^ 'init @m' (TypeApplication) is the initial element of 'm' | ||
36 | divInit :: Domain m -> m | ||
37 | -- ^ Calculate a representation of an element of 'Domain m' in 'Del m' | ||
38 | -- | ||
39 | -- prop> init `apply` divInit m = m | ||
40 | \end{code} | ||
41 | \end{defn} | ||
42 | |||
43 | Wir weichen von der originalen Definition von Moduln aus \cite{hofmann2012edit} darin ab, dass wir für das ausgezeichnete Element $\init_X$ des Trägers explizit (und konstruktiv) fordern, dass es ein schwach-initiales Element bzgl. der Monoidwirkung sei. | ||
44 | |||
45 | \begin{comment} | ||
46 | \begin{defn}[Modulhomomorphismen] | ||
47 | Unter einem Modulhomomorphismus zwischen Moduln $M$ und $M^\prime$ verstehen wir ein Paar $(f, \phi$) bestehend aus Abbildungen $f \colon \Dom M \to \Dom M^\prime$ und $\phi \colon \partial M \to \partial M^\prime$, sodass gilt: | ||
48 | \begin{itemize} | ||
49 | \item $\phi$ ist ein Monoidhomomorphismus: | ||
50 | |||
51 | \begin{itemize} | ||
52 | \item $\phi(1_{\partial M}) = 1_{\partial M^\prime}$ | ||
53 | \item $\forall (e, e^\prime) \in (\partial M)^2 \colon \phi(e e^\prime) = \phi(e) \phi(e^\prime)$ | ||
54 | \end{itemize} | ||
55 | \item $f$ erhält das initiale Element: | ||
56 | |||
57 | $$f(\init_M) = \init_N$$ | ||
58 | \item $f$ und $\phi$ sind \emph{kompatibel}: | ||
59 | |||
60 | $$\forall m \in \Dom M, e \in \partial M \colon f(m \cdot e) = f(m) \cdot \phi(e)$$ | ||
61 | \end{itemize} | ||
62 | |||
63 | \begin{code} | ||
64 | {- | ||
65 | data ModuleHom m n where | ||
66 | ModuleHom :: (Module m, Module n) => (Domain m -> Domain n) -> (m -> n) -> ModuleHom m n | ||
67 | -} | ||
68 | \end{code} | ||
69 | \end{defn} | ||
70 | \end{comment} | ||
71 | |||