diff options
Diffstat (limited to 'provider/posts/simmons-intro-to-cat-t/1.2.md')
-rw-r--r-- | provider/posts/simmons-intro-to-cat-t/1.2.md | 27 |
1 files changed, 26 insertions, 1 deletions
diff --git a/provider/posts/simmons-intro-to-cat-t/1.2.md b/provider/posts/simmons-intro-to-cat-t/1.2.md index b91cac4..19d71e4 100644 --- a/provider/posts/simmons-intro-to-cat-t/1.2.md +++ b/provider/posts/simmons-intro-to-cat-t/1.2.md | |||
@@ -91,7 +91,7 @@ We call the category comprised of such objects and arrows $\ca{RelH}$. | |||
91 | </div> | 91 | </div> |
92 | 92 | ||
93 | <div class="exercise"> | 93 | <div class="exercise"> |
94 | Topological spaces $(S, \mathcal{O}_S)$, where $S$ is a Set and $\mathcal{O}_S \subseteq \powerset(S)$, and continuous maps $f : S \to P$, that is $\forall V \in \mathcal{O}_T \ldotp f^\leftarrow(V) \in \mathcal{O}_S$, form a Category $\ca{Top}$. | 94 | Topological spaces $(S, \mathcal{O}_S)$, where $S$ is a Set and $\mathcal{O}_S \subseteq \powerset{S}$, and continuous maps $f : S \to P$, that is $\forall V \in \mathcal{O}_T \ldotp f^\leftarrow(V) \in \mathcal{O}_S$, form a Category $\ca{Top}$. |
95 | 95 | ||
96 | 1. For every $(S, \mathcal{O}_S) \in \ca{Top}$ there exists $\idarr{(S, \mathcal{O}_S)}$ | 96 | 1. For every $(S, \mathcal{O}_S) \in \ca{Top}$ there exists $\idarr{(S, \mathcal{O}_S)}$ |
97 | <div class="proof"> | 97 | <div class="proof"> |
@@ -123,3 +123,28 @@ We further define $m \circ m = m \ast m$. | |||
123 | </div> | 123 | </div> |
124 | </div> | 124 | </div> |
125 | </div> | 125 | </div> |
126 | |||
127 | <div class="exercise"> | ||
128 | Show that $\circ$ in $\ca{Pfn}$ is associative. | ||
129 | |||
130 | <div class="proof"> | ||
131 | Consider the composition $g \circ f = \rest{g}{\bar{B}} \circ \rest{f}{\bar{\bar{A}}}$ of two partial functions $f : A \to B$ and $g : B \to C$: | ||
132 | $$ | ||
133 | \begin{tikzcd} | ||
134 | A \arrow[r, "f"] & B \arrow[r, "g"] & C \\ | ||
135 | \bar{A} \arrow[u, hook] \arrow[ru, "\rest{f}{\bar{A}}" description] & \bar{B} \arrow[u, hook] \arrow[ru, "\rest{g}{\bar{B}}" description] & \\ | ||
136 | \bar{\bar{A}} \arrow[u, hook] \arrow[ru, "\rest{f}{\bar{\bar{A}}}" description] & & \\ | ||
137 | \end{tikzcd} | ||
138 | $$ | ||
139 | |||
140 | Extending the above to three partial functions $f : A \to B$, $g : B \to C$, and $h : C \to D$: | ||
141 | $$ | ||
142 | \begin{aligned} | ||
143 | (h \circ g) \circ f &= \rest{\left (\rest{h}{\bar{C}} \circ \rest{g}{\bar{\bar{B}}} \right )}{\bar{B}} \circ \rest{f}{\bar{\bar{A}}} \\ | ||
144 | &= \rest{h}{\bar{C}} \circ \rest{g}{\bar{\bar{B}}} \circ \rest{f}{\bar{\bar{A}}} \\ | ||
145 | &= \rest{h}{\bar{C}} \circ \rest{\left (\rest{g}{\bar{\bar{B}}} \circ \rest{f}{\bar{\bar{A}}} \right)}{\bar{\bar{A}}} \\ | ||
146 | &= h \circ (g \circ f) | ||
147 | \end{aligned} | ||
148 | $$ | ||
149 | </div> | ||
150 | </div> | ||