# Cryptography 

Exercise Sheet 1

Exercise 1-1 A substitution cypher is a slight generalisation of the shift cypher from the lectures. The key is a permutation $\pi$ on the set of letters $\{a, b, \ldots, z\}$. A message is encoded by applying the permutation to each letter individually; decoding works by applying the inverse of the permutation. For example, if the permutation $\pi$ maps a to $\mathrm{b}, \mathrm{b}$ to a and all characters to themselves, then the message abcda encodes to bacdb.
Decrypt the following cyphertext (from the Katz-Lindell-book), which comes from the encryption of English text.

```
jgrmqoyghmvbjwrwqfpwhgffdqgfpfzrkbeebjizqqocibzklfafgqvfzfwwe
ogwopfgfhwolphlrlolfdmfgqwblwbwqolkfwbylblylfsfljgrmqbolwjvfp
fwqvhqwffpqoqvfpqocfpogfwfjigfqvhlhlroqvfgwjvfpfolfhgqvqvfile
ogqilhqfqgiqvvosfafgbwqvhqwijvwjvfpfwhgfiwihzzrqgbabhzqocgfhx
```

Hint: The average frequencies of letters in English are as follows (in percent): a: 8.2, b: 1.5, c: 2.8 , d: 4.2 , e: 12.7 , f: 2.2 , g: 2 , h: 6.1 , i: 7 , j: 0.1 , k: 0.8 , l: 4 , m: 2.4 , n: 6.7 , o: 7.5 , p: 1.9 , $\mathrm{q}: 0.1, \mathrm{r}: 6$, s: 6.3 , t: 9 , u: 2.8, v: 1 , w: 2.4 , x: 2 , y: $0.1, \mathrm{z}: 0.2$.

Exercise 1-2 Decrypt the text file vigenere.txt from the course homepage, which contains English text encoded using the Vigenère cypher from the lecture.

Exercise 1-3 Consider an encryption scheme with message space $M=\{a, b, c\}$, key space $K=\left\{k_{1}, k_{2}, k_{3}\right\}$ and cyphertext space $C=\{0,1,2\}$.
Assume the probabilities of the messages are $P(M=a)=0.5$ and $P(M=b)=0.25$. The key generation function produces keys with probabilities $P\left(K=k_{1}\right)=P\left(K=k_{2}\right)=0.3$. As usual, the random variables $M$ and $K$ are assumed to be independent.
The encryption function itself is specified by the table below.

|  | a | b | c |
| :--- | :--- | :--- | :--- |
| $k_{1}$ | 0 | 2 | 1 |
| $k_{2}$ | 2 | 1 | 0 |
| $k_{3}$ | 1 | 0 | 2 |

a) Compute the probability distribution of the random variable $C$, i.e. the probabilities $P(C=i)$.
b) Compute the conditional probabilities $P(M=m \mid C=c)$ for all $m$ and $c$.

$$
\begin{aligned}
1-3 x) \quad P(C=a) & =P\left(k=k_{1} \wedge M=x\right)+P\left(K=k_{3} \wedge M=b\right)+P\left(K=k_{2} \wedge M=c\right) \\
& =P\left(K=k_{1}\right) P(M=x)+P\left(K=k_{3}\right) P(M=b)+P\left(K=k_{2}\right) P(M=c) \\
& =.3 \cdot 5+4 \cdot 25+3 \cdot 25 \\
& =325 \\
P(C=1) & =P\left(k_{3}\right) P(x)+P\left(k_{2}\right) P(b)+P\left(k_{1}\right) P(c) \\
& =.4 \cdot 5+.3 \cdot 25+.3 \cdot 25 \\
& =35 \\
P(C=2) & =P(1(C=0 \cup C=1))=1-P(C=0 \cup(=1) \\
& =1-P(C=0)-P(C=1)=.325
\end{aligned}
$$

1-3b) Kol cno gorar: $P(A \upharpoonright B)=P(A \wedge B) / P(B)$

$$
P(M=m \mid C=c)=P(m \wedge c) / P(c)=P(K=K \text { of. } M=m \Rightarrow(=c) P(M=m) / P(c)
$$

| $c^{m}$ | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| 0 | .461 | .307 | .230 |
| 1 | .571 | .214 | .214 |
| 2 | .461 | .230 | .307 |

Nole that $\neg \exists q \in R \mid \forall m, C \quad P(M=m) C=c)=q$, becaure $\neg \exists q^{\prime} \in R \forall K \quad N(K=K)=q^{\prime}$
$1-4$
Given a of of $n$ Permatations $\pi_{n}:\{0, \ldots, n-1\} \rightarrow\{0, \ldots, n-1\}$ of $\{0, \ldots, n-1\}$ ग.t. $\forall i, j \in\{0, \ldots, n-1\} \forall m \in\{0, \ldots, n-1\}!\pi_{i}(m)=\pi_{i}(m) \Rightarrow i=j$ (i.e. a latin aquare of order $n$ ):

Define $x$ vardom variable $K \in\{0, \ldots, n-1\}$, i.t. $\forall k \in\{0, \ldots, n-1\}: P(k=k)=\frac{1}{n}$, the key. Given $x$ random voriable $M \in\{0, \ldots, n-1\}$ with some probability distribution:
Take $C$, tle cipertext, to be $C=\pi K(M)$.
For perfect recurity it ruffices to show, that:

- Given $X$ and (there exista $x$ mellod to reconstrocf $M$ :

By (*)

$$
\begin{aligned}
& \text { - } \forall m,(\in\{0, \ldots, n-1\}: P(M=m \mid C=c)=P(M=m) \\
& \begin{aligned}
P\left((z c)=\sum_{i} P(K=i) P\left(M=\pi_{i}^{-1}(c)\right)\right. & =\frac{1}{n} \cdot \underbrace{}_{\left.\begin{array}{l}
\text { by (*) zod pidgron } \\
\sum_{i} P\left(M=\pi_{i}^{-1}(c)\right.
\end{array}\right)}=\frac{1}{n} P(M=i)
\end{aligned} \\
& \forall m, c: P(k=k \quad \text { ot. } M=m \Rightarrow C=c) \stackrel{1 *}{=} P\left(k=k \text { st. } \pi_{k}(m)=c\right)=\frac{1}{u} \\
& P\left(M=m \left\lvert\,(=c)=D\left(k=k \text {, }+M=m \Rightarrow(=c) \Gamma(M=m) / P(c=c)=\frac{1}{n} \cdot P(M=m) / \frac{1}{n}=P(M=m)\right.\right.\right.
\end{aligned}
$$

Exercise 1-4 A Latin square of size $n$ is a square filled with numbers from $\{0, \ldots, n-1\}$, such that each number appears exactly once in each row and in each column. An example of size 3 has already appeared in the previous exercise:

$$
\begin{array}{lll}
0 & 2 & 1 \\
2 & 1 & 0 \\
1 & 0 & 2
\end{array}
$$

Show how each Latin square can be used to define a perfectly secret encryption scheme. Give a full proof of perfect secrecy of this scheme for arbitrary $n$.

