{-# LANGUAGE RankNTypes, ConstraintKinds, TypeFamilies, FlexibleContexts, ScopedTypeVariables, ViewPatterns, TupleSections #-} module Postdelay.TimeSpec.Utils ( StringParser , spaceConsumer, spaces , lexeme , signed, optSigned , sign , boundedNatural , boundedRational , module Data.Interval , fromDigit , mkGramSepBy ) where import Control.Applicative import Control.Monad import Control.Lens import Data.Time import Data.Time.Lens import Data.Time.Zones import Data.Bool import Data.Maybe import Data.List import Data.Foldable import Data.Functor import Data.Function import Data.AdditiveGroup import Data.Interval (Interval, Extended(..), (<=..<=), (<=..<), (<..<=), (<..<), interval) import qualified Data.Interval as I import Text.Megaparsec import Text.Megaparsec.Prim (MonadParsec) import qualified Text.Megaparsec.Lexer as L import Debug.Trace type StringParser s m = (MonadParsec Dec s m, Token s ~ Char) spaceConsumer, spaces :: StringParser s m => m () spaceConsumer = L.space (void spaceChar) empty empty spaces = void $ lexeme spaceChar lexeme :: StringParser s m => m a -> m a lexeme = L.lexeme spaceConsumer signed, optSigned :: (StringParser s m, AdditiveGroup n) => m n -> m n signed = (<*>) (lexeme sign) optSigned = (<*>) (option id $ lexeme sign) sign :: (StringParser s m, AdditiveGroup n) => m (n -> n) sign = label "sign" $ choice [ char '+' $> id , char '-' $> negateV ] boundedNatural :: forall s n m. (Show n, Ord n, Num n, StringParser s m) => Bool -- ^ Require number to be padded with zeroes? -> Interval n -> m n boundedNatural padded (I.intersection (0 <=..< PosInf) -> bounds) | I.null bounds = empty | otherwise = do n <- foldl' (\i l -> i * 10 + l) 0 <$> digitN (fromDigit <$> digitChar) "Natural number cotained in: " ++ show bounds when (not $ n `I.member` bounds) $ fail "Natural number out of bounds" return n where digitN :: m n -> m [n] digitN p | PosInf <- maxDigits , Finite min <- minDigits = (++) <$> count min p <*> many p | Finite max <- maxDigits , Finite min <- minDigits , not padded = count' min max p | Finite max <- maxDigits , Finite _ <- minDigits , padded = count max p | otherwise = error "boundedNatural in undefined state" minDigits, maxDigits :: Extended Int (minDigits, maxDigits) = {- traceShowId -} ( max 1 . fmap digits . I.lowerBound $ close bounds , fmap digits . I.upperBound $ close bounds ) where close int | (Finite min, False) <- I.lowerBound' int = close $ interval (Finite $ min + 1, True) (I.upperBound' int) | (Finite max, False) <- I.upperBound' int = close $ interval (I.lowerBound' int) (Finite $ max - 1, True) | otherwise = int digits :: n -> Int digits 0 = 1 digits n = succ . fromJust $ findIndex (\(min, max) -> min <= n && n < max) [ (10^i, 10^(succ i)) | i <- ([0..] :: [Int]) ] boundedRational :: forall s m n. (Show n, RealFrac n, StringParser s m) => Bool -- ^ Require number to be padded with zeroes -> Interval n -> m n boundedRational padded (I.intersection (0 <=..< PosInf) -> bounds) | I.null bounds = empty | otherwise = (+) <$> boundedNatural padded wholeBounds <*> fractional "Nonnegative rational contained in: " ++ show bounds where fractional :: m n fractional = reqFractional $ char '.' $> (/ 10) . foldr' (\h t -> h + t / 10) 0 <*> some (fromDigit <$> digitChar) reqFractional | contained = option 0 | otherwise = id where (_, contained) = I.lowerBound' bounds wholeBounds | (Finite max, False) <- I.upperBound' bounds , max == (fromInteger $ round max) = interval (I.lowerBound' bounds) (Finite $ max - 1, True) | otherwise = bounds fromDigit :: Num n => Char -> n fromDigit c = fromIntegral $ fromEnum c - fromEnum '0' mkGramSepBy :: MonadParsec e s m => m a -> [m b] -> m [b] mkGramSepBy sep ps = map snd <$> mkGramSepBy' sep (zip [0..] ps) where mkGramSepBy' _ [] = empty mkGramSepBy' _ [(n, x)] = pure . (n, ) <$> x mkGramSepBy' sep ps = do head@(n, _) <- choice $ map (\(n, p) -> (n, ) <$> p) ps let ps' = filter (\(i, _) -> i /= n) ps tail <- option [] . try $ sep *> mkGramSepBy' sep ps' return $ insert head tail insert :: forall a. (Integer, a) -> [(Integer, a)] -> [(Integer, a)] insert x@(fst -> a) [] = [x] insert x@(fst -> a) (y@(fst -> b):ds) | a <= b = x:y:ds | otherwise = y:(insert x ds)