From f4c419b9ddec15bad267a4463f0720d6e28042d2 Mon Sep 17 00:00:00 2001 From: Gregor Kleen Date: Thu, 30 May 2019 12:18:08 +0200 Subject: Further work --- edit-lens/src/Control/Lens/Edit.lhs | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'edit-lens/src/Control/Lens/Edit.lhs') diff --git a/edit-lens/src/Control/Lens/Edit.lhs b/edit-lens/src/Control/Lens/Edit.lhs index 96b2114..6561528 100644 --- a/edit-lens/src/Control/Lens/Edit.lhs +++ b/edit-lens/src/Control/Lens/Edit.lhs @@ -12,7 +12,7 @@ import Control.Edit \end{comment} \begin{defn}[Zustandsbehaftete Monoidhomomorphismen] -Gegeben eine Menge von Komplementen $C$ und Monoiden $M$ und $N$ nennen wir eine partielle Funktion $\psi \colon C \times M \to C \times N$ einen zustandsbehafteten Monoidhomomorphismus wenn sie den folgenden Ansprüchen genügt: +Gegeben eine Menge $C$ von \emph{Komplementen} und zwei Monoiden $M$ und $N$ nennen wir eine partielle Funktion $\psi \colon C \times M \to C \times N$ einen zustandsbehafteten Monoidhomomorphismus wenn sie den folgenden Ansprüchen genügt: \begin{itemize} \item $\forall c \in C \colon \psi(1_M, c) = (1_N, c)$ @@ -28,7 +28,7 @@ type StateMonoidHom s m n = (s, m) -> (s, n) \end{defn} \begin{defn}[edit-lenses] -Für Moduln $M$ und $N$ besteht eine symmetrische edit-lens zwischen $M$ und $N$ aus zwei zustandsbehafteten Monoidhomomorphismen $\Rrightarrow \colon C \times \partial M \to C \times \partial N$ und $\Lleftarrow \colon C \times \partial N \to C \times \partial M$, mit kompatiblem Komplement $C$, einem ausgezeichneten Element $\ground_C$ und einer \emph{Konsistenzrelation} $K \subset \Dom M \times C \times \Dom N$ sodass gilt: +Für Moduln $M$ und $N$ besteht eine symmetrische edit-lens zwischen $M$ und $N$ aus zwei zustandsbehafteten Monoidhomomorphismen $\Rrightarrow \colon C \times \partial M \to C \times \partial N$ und $\Lleftarrow \colon C \times \partial N \to C \times \partial M$, mit kompatiblem Komplement $C$, einem ausgezeichneten Element $\ground_C \in C$ und einer \emph{Konsistenzrelation} $K \subset \Dom M \times C \times \Dom N$ sodass gilt: \begin{itemize} \item $(\init_M, \ground_C, \init_N) \in K$ @@ -67,7 +67,7 @@ instance (Module m, Module n) => HasEditLens (EditLens c m n) m n where \end{code} \end{defn} -\paragraph{Kompatibilität mit bestehenden lens frameworks} +\subsection{Kompatibilität mit bestehenden lens frameworks} Das einschlägige bestehende lens framework \cite{lens} konstruiert seine Linsen alá \citeauthor{laarhoven} wie folgt: -- cgit v1.2.3