From 44c5e3bfb13d6bb8821fb1de63f777ea48cc98bf Mon Sep 17 00:00:00 2001 From: Gregor Kleen Date: Wed, 3 Feb 2016 15:59:15 +0100 Subject: CatT 1.2.3 & 1.2.4 --- provider/posts/simmons-intro-to-cat-t/1.2.md | 45 ++++++++++++++++++++++++++++ 1 file changed, 45 insertions(+) (limited to 'provider/posts') diff --git a/provider/posts/simmons-intro-to-cat-t/1.2.md b/provider/posts/simmons-intro-to-cat-t/1.2.md index 7759368..3e83b5f 100644 --- a/provider/posts/simmons-intro-to-cat-t/1.2.md +++ b/provider/posts/simmons-intro-to-cat-t/1.2.md @@ -68,3 +68,48 @@ Show that such objects and morphisms form a category $\ca{SetD}$ $$(f \circ g)(\alpha) = f(b) = c$$ + +
+Consider pairs $(A, \odot)$ where $A$ is a set and $\odot \subseteq A \times A$ is a binary relation on $A$. + +Show that these pairs are objects of a category finding a sensible notion of morphism. + +
+For two such objects $(A, \odot), (B, \oplus)$ a morphism shall be a function $f : A \to B$ that respects the binary relation: +$$\forall a \odot a^\prime \ldotp f(a) \oplus f(a^\prime)$$ +We call the category comprised of such objects and arrows $\ca{RelH}$. + + 1. For every $(A, \odot) \in \ca{RelH}$ there exists $\idarr{(A, \odot)}$ + + $\id$ on $A$ is indeed a function which respects the binary relation ($\forall a \odot a^\prime \ldotp \id(a) \odot \id(a^\prime)$) and thus a morphism + + 2. There exists a partial binary operation $\circ$ on the arrows of $\ca{RelH}$ + + Given three objects $(A, \odot), (B, \oplus), (C, \otimes)$ and two functions $g: A \to B$ and $f: B \to C$ the function $f \circ g: A \to C$ is an arrow in $\ca{RelH}$, that is to say, $\forall a \odot a^\prime$: + $$a \odot a^\prime \implies g(a) \oplus g(a^\prime) \implies (g \circ f)(a) \otimes (g \circ f)(a^\prime)$$ +
+
+ +
+Topological spaces $(S, \mathcal{O}_S)$, where $S$ is a Set and $\mathcal{O}_S \subseteq \powerset(S)$, and continuous maps $f : S \to P$, that is $\forall V \in \mathcal{O}_T \ldotp f^\leftarrow(V) \in \mathcal{O}_S$, form a Category $\ca{Top}$. + + 1. For every $(S, \mathcal{O}_S) \in \ca{Top}$ there exists $\idarr{(S, \mathcal{O}_S)}$ +
+ $\id$ on $S$ is indeed a continuous map and thus a morphism +
+ + 2. There exists a partial binary operation $\circ$ on the arrows of $\ca{Top}$ +
+ Given three spaces $(S, \mathcal{O}_S), (T, \mathcal{O}_T), (U, \mathcal{O}_U)$ and two continuous maps $g : S \to T$ and $f : T \to U$ the map $f \circ g : S \to U$ is an arrow in $\ca{Top}$, that is to say, it is contiuous: + $$V \in \mathcal{O}_U \implies g^\leftarrow(V) \in \mathcal{O}_T \implies (f \circ g)^\leftarrow(V) \in \mathcal{O}_S$$ +
+
+ +
+Let $A$ be an object of a category $\ca{C}$. +Show that $\hom{\ca{C}}{A}{A}$ is a monoid under composition. + +
+ +
+
-- cgit v1.2.3