From 7ff393170b2e542540ee5c0e044839e4df449947 Mon Sep 17 00:00:00 2001 From: Gregor Kleen Date: Tue, 2 Feb 2016 22:57:15 +0100 Subject: comment on 1.2.1 --- provider/posts/simmons-intro-to-cat-t/1.2.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/provider/posts/simmons-intro-to-cat-t/1.2.md b/provider/posts/simmons-intro-to-cat-t/1.2.md index 00a9546..eef7a0a 100644 --- a/provider/posts/simmons-intro-to-cat-t/1.2.md +++ b/provider/posts/simmons-intro-to-cat-t/1.2.md @@ -45,5 +45,7 @@ Let $\ca{Pno}$ be the category of objects $(A, \alpha, a)$ where $A$ is a set, $ * $f(0) = a = g(0)$ * Given $n \in \N$: $$(f \circ \mathrm{succ})(n) = (\alpha \circ f)(n) \overset{\text{ind.}}{=} (\alpha \circ g)(n) = (g \circ \mathrm{succ})(n)$$ + + The morphism maps $\N$ to the transitive closure of $a$ under $\alpha$. -- cgit v1.2.3